ИССЛЕДОВАНИЕ ГРАДИЕНТОВ В КАНАЛЕ ЛИДЕРА

Студентка НАЗАРОВА К. С.

Руководитель профессор доктор И. С. Стекольников

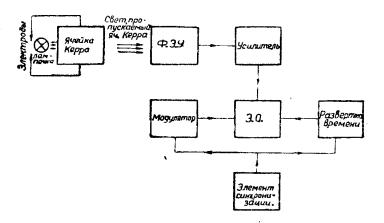
(Представлено научным семинаром по диэлектрикам)

Изучение атмосферного электричества имеет огромное значение с точки зрения создания надежной грозозащиты, являющейся одним из факторов, обеспечивающих бесперебойное снабжение потребителей электроэнергией.

Этот вопрос актуален особенно в настоящее время в связи со строительством большого количества линий передач. Изучение физики молнии в лабораторных условиях основано на аналогии природы молнии и длинной искры.

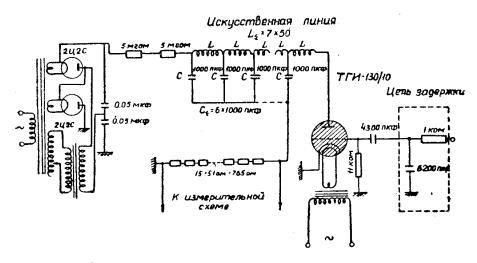
Как известно, имеется две основных стадии развития разряда как молнии, так и длинной искры [1]: лидерная и стадия главного разряда. Хотя лидерная стадия является наиболее изученной, некоторые параметры лидера все же не нашли должного освещения в литературе. Так, градиенты канала лидера исследованы теоретически и особенно экспериментально недостаточно.

Экспериментальное исследование градиентов в канале лидера проводилось автором в лаборатории высоковольтного газового разряда ЭНИН АН СССР под руководством зав. ЛВГР ЭНИН доктора технических наук профессора Й. С. Стекольникова с применением новейших достижений измерительной техники, как-то: фотоэлектронного умножителя — ФЭУ, ячейки Керра и высокоскоростного электронного осциллографа.


Для исследования градиентов в канале лидера были применены 2 схемы.

Блок-схема первой установки с применением ФЭУ и ячейки Керра представлена на фиг. 1.

В разрядный промежуток положительный стержень-плоскость помещались дополнительные электроды, служащие зондами. Изменение разности потенциалов между ними во время процесса разряда подается к электродам ячейки Керра. Перед поляризатором ячейки помещалась лампочка. В зависимости от изменения между зондами разности потенциалов ячейка Керра пропускает различный световой поток от лампочки. Это временное изменение света падает на фотокатод ФЭУ, который преобразует световой сигнал в электрический, который затем усиливается с помощью усилителя и поступает на пластины явления электронного осциллографа.


Таким образом, ЭО регистрирует величину разности потенциалов между зондами во всех стадиях разряда, в том числе и лидерной.

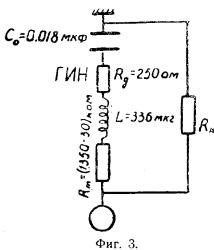
Для проверки работы измерительной схемы и для градуировки ее

Фиг. 1. Блок-схема для исследования градиентов канала лидера по первому способу

по напряжению применялась блок-схема (фиг. 2), состоящая из высоковольтной выпрямительной установки, генератора прямоугольных импульсов и цепи задержки. Эксперименты проводились при тормозном сопротивлении $R^{\tau} = 1350$ ом.

Фиг. 2. Схема для определения чувствительности измерительных установок

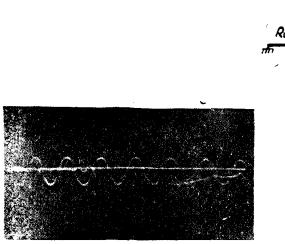
Во время проведения исследования выявилась необходимость в увеличении чувствительности ячейки Керра, путем уменьшения расстояния между ее электродами с 5 до 0,8 мм. Осциллограммы напряжения между зондами и тока в промежутке, который необходим для обработки результатов, представлены на фиг. 3. Расстояние между электродами ячейки составляет 1,3 мм.

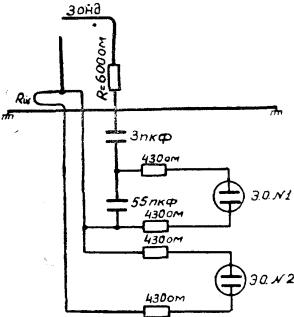

Как видно из осциллограмм, при короне — насыщение $\Phi \ni V$, а в лидерной стадии — отклонения на осциллографе от тока $\Phi \ni V$.

Таким образом, из-за большой разницы напряжений в стадии короны и в момент прохождения лидера невозможно было точно замерить

градиенты в канале лидера, т. к. при увеличении чувствительности ячейки Керра происходил пробой в ней в стадии короны.

Однако, учитывая чувствительность схемы, удалось установить, что градиенты в канале лидера меньше 1 $\kappa B/c M$ при тормозном сопротивлении $R_{\tau} = 1350~o M$.

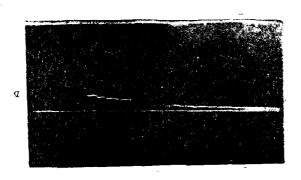

Была применена другая схема, представленная на фиг. 4, представляющая модификацию первой. В разрядный промежуток положительный

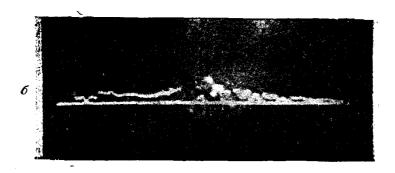

Параметры генератора импульсных напряжений.

Фиг. За. Осциллограмма градиента в длинной искре, полученная при измерении по первому способу; частота градуировочных колебаний 500 кгц

Фиг. $3\, \sigma$. Осциллограмма тока в длинной искре. Частота градуировочных колебаний $500\,\kappa$ г μ .

Фиг. 4. Схема измерения градиентов в длинной искре по второму способу.


стержень — шар помещался зонд. Расстояние между зондом и стержнем менялось. При разряде лидер, развиваясь со стержня, замыкает промежуток между стержнем и зондом.


Напряжение между стержнем и зондом подавалось на емкостный делитель, состоящий из последовательно включенных конденсаторов ем-

костью 3 $n\kappa\phi$ и 55 $n\kappa\phi$. Напряжение одного из конденсаторов подводилось к пластинам явления осциллографа (ЭО N2 1).

Чувствительность схемы определялась по схеме фиг. 2.

Осциллографирование производилось при тормозных сопротивлениях $R_{\rm T}$ =1350 ом и $R_{\rm T}$ =30 ком. Осциллограммы напряжения между зондом и стержнем приведены на фиг. 5 a и δ .

Фиг. 5. Осциллограмма градиента лидера, полученная при измерении по второму способу а) $R_1 = 1350$ ом, S = 5 см; б) $R_T = 30$ ком, S = 10 см.

На фиг. 5a представлена осциллограмма, снятая при $R_{\rm T}=1350$ ом и расстоянии между стержнем и зондом S=5 см. На фиг. 5 б — при $R_{\rm T}=30$ ком и S=10 см.

Результаты экспериментов представлены ниже.

При
$$R_T = 30$$
 ком и $S = 5$ и 10 см градиент $g = 250$ в см , $R_T = 1350$ ом и $S = 5$ см , $g = 250$ в см , $R_T = 1350$ ом и $S = 10$ см , $g = 500$ в см

Вследствие сравнительно небольшого числа экспериментальных данных полученные величины градиентов имеют ориентировочный характер, и исследования в этом направлении продолжаются.

ЛИТЕРАТУРА

1. Стекольников И. С. Исследование природы длинной искры. **І. Изв. АН** СССР, ОТН № 11, 1952.

ОПЕЧАТКИ

Стр.	Строка	Напечатано	Следует читаль
3	11 сн.	10 6	10-6
9	9 св.	5.10 ₋₉ ceκ	5 ·10 −9 cek
11	1 св.	$2 \div 3 \cdot 10_8 - ce\kappa$	$2 \div 3 \cdot 10^{-8} ee\kappa$
29	6 сн.	10-6 см/сек	106 см/с ек
29	2 сп.	большой	больший
30	3 cB.	10 ⁶ сек	10-6 сек
1			спайности
32	6 сн.	спаянности	4
33	17 св.	10 - сек	10_8 crk
34	3 св.	10 ⁶ ceκ	10-6 cek
34	4,5 св.	10 4 = 10— ceκ	$10^{-4} - 10^{-1} ce\kappa$
34	19 св.	10-8 и 10-6 см сек	10-8 сек и 10° см/сек
56	форм. 9	В конце фигурной	скобки следует - 1.
65	3 сн.	формулу	форму
91	5 св.	1350 ом и R $_{\rm T} = 30$ ком	$R_{\rm T} = 1350 \ om \ R_{\rm T} = 30 \ \kappaom$
107	6 св.	$\tau = 10 - ce\kappa$	$\tau = 10^{-6} ce\kappa$
100	16 сн.	образцов	микротв ердости образ цов
111	4 cm.	E	E _{np}
			•
	риг. 9, 5 св .	поле однородное	поле неоднородное
116	12 сн.	Винчелла	Винчелл
123	7 св.	атронневир	спайность
128	32 св.	40 мол 6 о	90 мол 4/0
170	1 сн.	ангенса	тангенса
217	15 сн.	При введенни примесей типа внедрения	При введении примесей в твердые растворы типа внедрения
218	24 св.	Измерялась зависимость	Определялась зависимость
219	8 св.	хлористый рубид и й	бромистый калий
219	22 сн.	хранения из монокристаллов	хранения монокристаллов
220	фиг. 2	В точке начала координат слева по оси Ig т следует поставить — 12	
228	1 св.	ыражение	выражение
228	5 св.	огда	тогда
228	6 св.	арфора	фарфора
228	7 св.	каркасном	в каркасном
228	8 св.	етальной	д е тальной катушек
2 2 8	16 св.	гатушек Сg	$C_{\mathcal{G}}$
228 242	форм. 3 2 сн.	од Из фиг. 1	из днаграммы илавкости
	11—12 сн.	рентгенограммы смещены	рентгенограммы сплава смещены
251	24 св.	с ионизованном	с ионизированным
301	7 сп.	монизирующих	ионизирующих
	18 сн.	-процентного	50-процентного
302	9 сн.	$950/_{\odot}$ монокристалла	950,0 плотности монокристалла •
302 306	J CH.		П группы
1	24 сн.	группы	
306 325 332	24 сн. 6 сн.	10^7-10^8 om cek	$10^7 - 10^8 \ cM/ce\kappa$
306 325	24 сн.		