ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО Том 95 ИНСТИТУТА имени С. М. КИРОВА 1958

ПОГЛОЩЕНИЕ РЕНТГЕНОВЫХ ЛУЧЕЙ В КРИСТАЛЛАХ ЩЕЛОЧНО-ГАЛОИДНЫХ СОЛЕЙ

А. Д. ЩЕЛОКОВ

(Представлено профессором доктором А. А. Воробьевым)

Пучок рентгеновых лучей 7 (фиг. 1) с углом расхождения 5—6° от рентгеновой трубки 1, пройдя фильтры 3 и 4 (0,3 *мм* Си + +0,6 *мм* Al) и отверстие 5 диаметром 3 *мм* в свинцовой плите 6 толщиной 12 *мм*, падал на ионизационную камеру 8 типа AГ, ток которой измерялся усилителем постоянного тока Ус ДД-Б. Характеристики лучей: напряжение на трубке 102 кв, эффективная длина волны $\lambda_{3\phi\phi} = -0.22 \text{ Å}$, разнородность h = 1.38 [6], минимальная граничная волна $\lambda_0 = 0.12 \text{ Å}$.

Образцы 9, помещаемые на пути луча 7, представляли собой пластинки $\sim 0.5 \times 0.5 \ cm$, выколотые из монокристаллов щелочно-галондных солей с толщинами d от 0,3 до 12 mm.

Измерялись в относительных единицах начальная интенсивность луча *J*₀ (без образца) и интенсивность после прохож-

Фиг. 1. Схема установки для определения поглощения рентгеновых лучей в твердых телах

Фиг. 2. Кривые поглощения рентгеновых лучей в кристаллах щелочно-галоидных солей, $\lambda \not = \phi \phi = 0.22 \text{ Å}, h = 1.38$

дения образца—*J*, по которым строились кривые зависимости $\lg J/J_0$ от *d*, представленные на фиг. 2. По наклону кривых определялись линейные коэффициенты поглощения μ , эффективные в интервале толщин $0 \div 1$ *мм*, и по μ находились массовые коэффициенты поглощения μ/ρ (ρ —плотность), которые в порядке возрастания помещены в табл. 1. Для сравнения в таблице дан μ/ρ для меди, измеренный в тех же условиях.

Таблица 1

	Кристаллы	µ/р в с <i>м²/г</i>	Плотность р в г/см ³	Молекуляр- ный вес <i>М</i> в г/моль	Энергия кристалли- ческой ре- шетки <i>Ер</i> в эв	Константа поглощения С.10 ⁻³
1	LiF	0,176	2,60	25,94	10,56	0,2165
2	NaCl	0,38	2,18	58,54	7,93	1,095
3	KC1	0,545	1,99	74,56	7,23	1,755
4	KBr	2,152	2,73	119,02	6,94	7,274
5	NaBr	2,00	3,21	102,91	7,55	7,770
6	RbCI	2,56	2,74	120,94	6,95	8,295
7	KJ	5,11	3,12	166,02	6,55	21,95
8	Cu	1,54	8,93	63,54		5,96
	1	1	1	1	1	1

Массовый коэффициент поглощения при $\lambda_{\partial \phi \phi} = 0,22$ Å

Для сопоставления изменения μ/ρ с изменением других характеристик в табл. 1 даны плотность, молекулярный вес, энергия решетки и константа поглощения *C* (о ней см. дальше).

Как видно из таблицы, µ/р щелочно-галоидных кристаллов не имеет линейной зависимости от плотности; с ростом энергии кристаллической решетки µ/р в общем уменьшается для тяжелых солей быстро, для легких — медленно (фиг. 3).

Согласно фиг. 2, испытанные кристаллы по поглощению делятся на 3 группы (3 семейства кривых).

Полученные значения µ/р для щелочно-галоидных солей удовлетворительно описываются приближенной формулой:

$$\mu/\rho = 1.95 \cdot 10^{-2} \cdot \lambda^{2.8} \cdot C, \qquad (\lambda \leqslant \lambda_{\kappa})$$
 (1)

где

$$C = \frac{A_1 Z_1^{2.58} + A_2 Z_2^{2.58}}{A_1 + A_2}, \qquad (2)$$

λ — длина волны поглощаемых лучей в Å;

 A_1 и A_2 — атомные веса составляющих соль атомов;

Z₁ и Z₂ — порядковые номера в табл. Менделеева.

Формула (1) получена на основании формулы Глокера [2] для массового коэффициента фотоэлектрического поглощения и закона аддитивности [1—5] при следующих допущениях и условиях: 1) для рентгеновых лучей с энергией квантов меньше $350-400 \ \kappa ss$ можно считать суммарный коэффициент поглощения μ равным коэффициенту фотоэлектрического поглощения τ ($\mu \simeq \tau$); 2) длины волн рентгеновых лучей от 0,34 до 0,03 Å меньше всех длин волн границы К-полосы поглощения (λ_{κ}) атомов, составляющих щелочно-галоидные соли ($\lambda \leqslant \lambda_{\kappa}$).

Величина *С* (2), будучи безразмерной константой для данного вещества, характеризует поглощательную по отношению к рентгенолучам способность вещества и в отличие от μ/ρ не зависит от λ для щелочно-галоидных солей в интервале \sim от 0,3 до 0,03 Å.

Фиг. 3. Связь μ/ρ и константы поглощения *С* щелочно-галоидных кристаллов с энергией решетки. (---о--о--)-теоретические, (О, Δ , \Box , x)-экспериментальные, $\lambda_{\phi\phi\phi} = 0.22$ Å.

Массовый коэффициент поглощения μ/ρ при $\lambda = const$ линейно зависит от *C*.

Константу поглощения С (2) можно представить так:

$$C = p_1 Z_1^{2,58} + p_2 Z_2^{2,58} = Z_{a\phi\phi}^{2,58}, \qquad (3)$$

где **p**₁ и **p**₂ — весовые доли атомов, составляющих молекулу щелочно-галоидной соли.

Число $Z_{s\phi\phi}$, согласно (3), можно трактовать как эффективное (по отношению к поглощению) число электронов в молекуле, поскольку порядковые номера Z_1 и Z_2 атомов физически означают числа электронов в составляющих атомах.

 $Z_{a\phi\phi}$ практически равно аддитивно полученному числу электронов $Z_{ad} = p_1 Z_1 + p_2 Z_2$.

Константа С, следовательно, определяется, согласно (3), эффективным числом электронов в молекуле вещества.

В табл. 2 приведены для всех щелочно-галоидных солей константы поглощения C и числа $Z_{s\phi\phi}$.

По возрастанию поглощения щелочно-галоидные соли, согласно

298

Таблица 2

Фиг. 4. Величина константы поглощения С щелочно-галоидных солей в зависимости от номера в ряду поглощения. Последний разбивается по величине µ/р на 4 группы: (µ/р пропорционально С)

(1) или (2), располагаются в ряд, распадающийся на 4 группы, что представлено на фиг. 4.

Удовлетворительное согласие формулы (1) с опытными данными представлено на фиг. 5 и 6.

Отклонение экспериментальной кривой 2 (фиг. 5) от вычисленной по (1) прямой 3 в области больших **С** объясняется недостаточной мо-

Фиг. 5. Зависимость μ/ρ щелочно-галоидных кристаллов от константы поглощения С. Для лучей, далеких от монохроматических лучей, с $\lambda_{3\phi\phi} = 0,34 \text{ Å}$ кривые 4 — вычисленная и 1 — экспериментальная. Для лучей, более близких к монохроматическим с $\lambda_{3\phi\phi} = 0,22 \text{ Å}$ кривые 3 — вычисленная, 2 — экспериментальная.

Фиг. 6. Зависимость µ/р щелочно-галоидных солей от состава. На уровне иодидов — IV группа кристаллов; на уровне бромидов — III группа и т. д.

мохроматичностью использованных лучей. Для лучей, далеких от монохроматичности, расхождение еще большее (кривая 1—экспери-

ментальная, 4 — вычисленная по (1). Величина µ/р для КЈ, найденная из фиг. 1 для толщины *d*, близкой к нулю (при этом фильтрация лучей в КЈ почти отсутствует), дает экспериментальную точку, смещающуюся с кривой 2 на вычисленную 3. Смещение опытной величины µ/р для NaBr в сторону меньших значений, чем требуется согласно ряда поглощения из (1) (фиг. 4), объясняется сильной гигроскопичностью NaBr, который в момент измерения в комнатной атмосфере частично расплывался и уменьшал толщину.

В табл. 2 обращает на себя внимание определенная закономерность в нарастании величин $Z_{s\phi\phi}$ или C (а следовательно, и μ/ρ) с изменением состава.

ЛИТЕРАТУРА

1. Корсунский М. И. Физика рентгеновых лучей, ОНТИ, М.—Л. 1936. 2. Глокер Р. Рентгеновые лучи и испытание материалов, ГИТТЛ. М.—.1, 1932.

3. Аглинцев К. К. Дозиметрия монизирующих излучений, ГИТТЛ, М.-Л, 1950.

4. Поройков И. В. Физические основы дозиметрии рентгеновских лучей ГИС и Р, М.-Л, 1934.

5. Хараджа Ф. Н. Общий курс рентгенотехники, ГЭИ, 1956.

6. Гречишкин С. В. Основы рентгенотерапевтической практики. Медгиз, 1952.

Crp. Строка Напечатано Следует читаль 3 10+6 10 - 611 сн. 9 св. 9 5.10-9 сек 5.10-9 cek 11 $2 \div 3.10_8 - ce\kappa$ 2 -:- 3.10-8 cek 1 св. $\overline{29}$ 10-6 см/сек 106 CM/Cek 6 сн. 292 сн. большой больший 10-6 сек 30 3 св. 10 6 cek 326 сн. спаянности спайности 17 св. 10-8 CrK 33 10 - сек 343 cb. 10-6 cek 10 6 cek 344,5 cB. 10-4-10-1 Cek 10 4 - 10- cek 34 19 cs. 10-8 и 10-6 см сек 10-8 сек и 10° смлеек В конце фигурной скобки следует - 1. 56 форм. 9 65 3 сн. форму формулу 91 5 св. 1350 ом и R $_{\rm T} = 30$ ком R_{T} 1350 OM RT 30 KOM 107 6 св. $\tau = 10 - c e \kappa$ $\tau = 10^{-6} ce\kappa$ 109 16 сн. образцов микротвердости образцов 111 4 cH. E Enp 112 поле неоднородное энг. 9. 5 **св**. поле однородное Винчелл 116 12 сн. Винчелла спайность 1237 CE. спаянность 128 32 ¢B. 90 мол ч/о 40 мол 0 п 170 1 сн. тангенса ангенса 217При введении примесей типа 15-сн. При введении примесей в твердые растворы типа внедрения внедрения 21824 св. Определялась зависимость Измерялась зависимость 219 8 св. бромистый калий хлористый рубидий 219 22 сн. хранения монокристаллов хранения из монокристаллов В точке начала координат слева по оси 1g с следует 220фиг. 2 поставить - 12 выражение ыражение 2284 св. тогда 2285 св. огда фарфора арфора 2286 св. в каркасном 2287 св. каркасном детальной етальной 2288 св. катушек гатушек 2**2**8 16 св. C_{g} Cgформ. З 228Из диаграммы плавкости Из фиг. 1 242 2 сн. рентгенограммы сплава смещены рептгенограммы смещены 24411—12 сн. с ионизированным 25124 св. с ионизованном ионизирующих монизирующих 301 7 сн. 50-процентного 302 -процентного 18 сн. 950 плотности монокристалла -95% монокристалла 306 9 сн. 11 группы 325 группы 24 сн. $10^7 - 10^8 \ cm/cek$ 107 — 108 ом сек 332 6 сн. ,438-1* "ИЗВ—1" 34**3** 1 сн. Co.. 8 сн. Co 394

ОПЕЧАТКИ

ŧ.