ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

АНАЛИЗ ТЕОРЕТИЧЕСКОГО УРАВНЕНИЯ КРИВОУХОВА-БЕЛОУСОВА ДЛЯ РАСЧЕТА СИЛЫ РЕЗАНИЯ

Г. Л. КУФАРЕВ

(Представлено профессором доктором А. М. Розенбергом)

В последние годы в литературе по теории резания металлов появляются все новые и новые теоретические уравнения для расчета главной составляющей силы резания. Стремление получить такое уравнение вполне закономерно, так как при возможности теоретического расчета силы P_z отпадает необходимость в проведении десятков тысяч сложных экспериментов с измерением силы для получения нормативных материалов.

Многие из предлагаемых уравнений качественно правильно отражают физические явления, сопутствующие процессу резания, позволяют тем самым глубже понять закономерности процесса резания и с большей или меньшей степенью точности определить расчетом силу P_{α} .

Наряду с этим имеются и такие "теоретические" уравнения для расчета силы, которые совершенно не согласуются с опытом, что говорит о полной несостоятельности положений и гипотез, положенных в основу расчета.

Одним из таких уравнений является уравнение Кривоухова Белоусова [1]. Оно имеет следующий вид:

$$P_z = 0,112.t.s.\gamma_1.c.\Theta_{\text{n.t.}}(1+e^{-0,041.s.\sin{\varphi}\sqrt{\frac{v}{a.D}}}) \times \\ \times \left(1-0,177 \frac{\log{\gamma}}{\mu}\right) + F_1, \ \kappa z.$$

Здесь: t—глубина резания, мм;

s—подача, $mm/o\delta$;

 γ_1 —удельный вес обрабатываемого металла, $z/c M^3$;

с—теплоемкость, кал/г при 0°С;

 $\Theta_{\rm nл}$ —температура плавления, °C; α —температуропроводность, $c m^2/c \kappa$;

ф-главный угол режущей кромки в плане;

µ-коэффициент трения по передней грани;

D—диаметр обрабатываемой заготовки, c_M ;

 F_1 —сила трения по задней грани, κz .

Коэффициент трения и авторами принимается постоянным и равным 0,5. Сила трения по задней грани определяется по уравнению:

$$F_1 = (0.1 H_B - 15) \cdot l, \ \kappa r.$$

Здесь: $H_{\mathcal{B}}$ —твердость обрабатываемого металла по Бринелю; l—активная длина режущей кромки.

Обозначим:

$$0.112 \cdot t \cdot s \cdot \gamma \cdot c \cdot \Theta_{\text{BH}} = k,$$

$$\left(1 + e_{-0.041 \cdot s \cdot \sin \varphi} \sqrt{\frac{v}{\bar{a} \cdot D}}\right) = A,$$

$$\left(1 - 0.177 \cdot \frac{\text{tg } \gamma}{\sigma}\right) = B.$$

Тогда приведенное выше уравнение для расчета силы P_z примет вид

$$P_{r} = k \cdot A \cdot B + F_{1}, \quad \kappa z. \tag{1}$$

Проанализируем это уравнение.

Хорошо известно и подтверждено десятками тысяч опытов, проведенных различными исследователями, что сила P_z с момента исчезновения нароста на резце снижается при увеличении скорости резания. Уменьшение силы в этой области скоростей резания объясняется тем, что рост скорости резания приводит к увеличению температуры на передней грани резца, с ростом которой уменьшается коэффициент трения стружки о резец. Уменьшение коэффициента трения, в свою очередь, приводит к снижению усадки стружки и (при постоянном переднем угле γ резца) степени пластической деформации металла стружки, характеризуемой относительным сдвигом. Уменьшение степени пластической деформации и объясняет соответственное уменьшение силы резания. Именно поэтому в последних нормативах порежимам резания твердосплавным инструментом [2], которым работают как раз в той области скоростей, когда нарост уже отсутствует, принята следующая эмпирическая зависимость для расчета силы P_z

$$P_z = C_{p_z} \cdot t^{x_{p_z}} \cdot s^{y_{p_z}} \cdot v^n \cdot k_{p_z}.$$

Для случая продольного точения сталей показатель степени при скорости дается отрицательным и равным -0,15. При этом изменение скорости резания от 50 до 200 м/мин. снижает силу P_z на 23%, а до 500 м/мин.—на 41%.

О таком же изменении силы P_z с ростом скорости резания в условиях отсутствия нароста говорят данные опытов, проведенных в лаборатории резания Томского политехнического института, приведеные в табл. 1. Эти опыты были проведены при подаче s=0,291 мм/об и $\phi=70^\circ$.

Как же отражает формула (1) влияние скорости резания на силу P_z ? При изменении скорости резания в уравнении (1) будет изменяться только величина A, так как k и F_1 от скорости не зависят. Не зависит от скорости резания и величина B, поскольку коэффициент трения авторами принимается постоянным. Что же касается изменения величины A, то при увеличении скорости от 20 до 500 m/muh (при s=0,291 mm/oб и D=100 mm) она уменьшается лишь на 10-12%

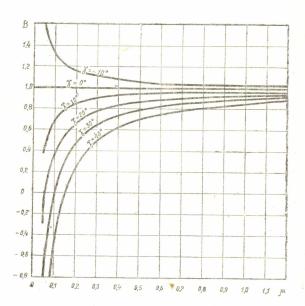
Обрабатываемый	Передний угол, ү°	Пределы изменения скорости резания, м/мин	Пределы изменения	Изменение силы, ΔP_z		
материал			силы P_z , κz	кг	%	
Сталь 10	20 10 0 —10	36—182 37—181 33—188 33—173	173—120 258—143 288—148 289—176	- 53 115 140 113	-33,0 -44,6 -48,6 -39,1	
Сталь ЗОХГС	10 0 -5	22-118 25-121 20-116	265—183 276—210 290—201	- 82 - 66 - 89	$ \begin{array}{r} -32,0 \\ -23,9 \\ -30,7 \end{array} $	
Сталь 4	10 - 2 -10	30—175 38—172 32—160	182—138 256—170 268—163	- 44 - 86 105	-24,2 -33,6 -36,7	
Сталь 9ХС	10 0 —10	30—151 31—151 22—140	115— 58 274—194 280—220	- 57 - 80 - 60	$ \begin{array}{r} -49,5 \\ -29,2 \\ -21,4 \end{array} $	
Сталь ШХ—15	10 0 —10	27—133 27—143 25—132	258—188 330—204 332—228	- 70 -126 -104	-27,2 -38,2 -31,3	
Сталь 12ХНЗА	10 0 —10	40—204 40—206 42—206	227—156 286—181 310—191	- 71 105 119	-31,3 -36,7 -38,4	
Сталь ЭЯІТ	20 10 0	55—133 55—133 55—134	164—140 170—148 198—168	- 24 - 22 - 30	-14,6 $-13,0$ $-15,2$	
Медь	10	44-266	1 56 – 113	— 43	— 27,6	

(для разных сталей изменяется значение температуропроводности). Следовательно, сила P_z , рассчитанная по формуле (1), будет уменьшаться при изменении скорости от 20 до 500 m/muh. менее, чем на 10-12%, что никак не согласуется с опытом.

Если даже рассчитывать величину B с учетом фактического коэффициента трения, то и в этом случае результат получается столь же

неудовлетворительным.

На фиг. 1 представлен график, выражающий зависимость величины B в формуле (1) от коэффициента трения для различных передних углов резца. Из графика следует, что уменьшение коэффициента трения, которым всегда сопровождается увеличение скорости резания в интересующем нас диапазоне, уменьшает величину B, а следовательно, и силу P_z только при положительных передних углах. Задаваясь, например, действительными коэффициентами трения ($\mu=0.9-0.65$ соответственно для $\gamma=20-0^\circ$ и v=20-200 м/мин.) получим уменьшение B лишь на 2-3%.


Если для положительных передних углов принятая зависимость величины B и силы P_z от коэффициента трения подтверждается хотя

бы качественно, то для $\gamma \ll 0$ не получается и этого. При отрицательном переднем угле сила резания, рассчитанная по формуле (1), с уменьшением коэффициента трения должна расти, что не увязывается с элементарными представлениями о процессе резания. Причем этот рост силы будет весьма существенным, так как средний уровень коэффициента трения при отрицательных передних углах гораздо ниже, нежели при положительных. При малых же значениях коэффициента трения величина B становится более чувствительной к его изменению.

Ошибочность принятой зависимости силы P_z (величины B) от коэффициента трения следует еще и из того, что величина B может

принимать отрицательные значения, в то время как в действительности составляющая силы P_z , действующая на переднюю грань резца, никогда не бывает отрицательной.

Так, по опытам Б. М. Орлова [3] при резании стали 20X ($\gamma=30^\circ$) со смазкой четыреххлористым углеродом коэффициент трения был равным 0,1. Сила P_z при этом для различных толщин среза изменялась от 12 до 75 кг. В опытах Л. А. Хворостухина [4] при резании меди ($\gamma=40^\circ$) со смазкой мыльной водой коэффициент трения был равным 0,08, а сила $P_z=21$ кг (s. t=0.9 мм²).

Фиг. 1. Зависимость величины B в уравнении (1) от коэффициента трения для различных передних углов резца.

Если для этих опытов определить величину B по графику, изображенному на фиг. 1, то в первом случае B=0, а для второго опыта B=-0.85, то есть сила резания, рассчитанная для каждого из этих опытов по уравнению (1), оказывается отрицательной, что и указывает на безусловную неприемлемость данного уравнения.

Известно, что сила резания существенно зависит от прочностных характеристик обрабатываемого металла. Как отражает формула (1) это обстоятельство?

В табл. 2 приведены необходимые для расчета силы P_z характеристики сталей, меди и алюминия сильно разнящихся по своим прочностным показателям ($H_{\rm D}$, $\sigma_{\rm B}$).

Из табл. 2 следует, что, не делая существенной ошибки, можно считать величины γ_1 , c и $\Theta_{\rm пл}$ для всех сталей постоянными. Таким образом, для всех сталей величина k в уравнении (1) остается практически неизменной. Следовательно, с изменением марки стали в уравнении (1) будет изменяться лишь величина A, зависящая от температуропроводности. Расчет показывает, что при изменении температуропроводности a от 0,224 до 0,042, то есть более чем в 5 раз, величина A изменяется меньше чем на 8%. Более того, и с точки зрения влияния на силу P_z прочностных характеристик металлов формула (1) содержит в себе качественные противоречия. Чем больше температуро-

Металл	Уд. вес, г/см³ γ ₁	Теплоем- кость С <i>кал/г</i> при 0°С	Температу- ра плавле- ния, $\Theta_{\text{пл}}$	Температу- ропровод- ность <i>a</i> , <i>c.м</i> ² / <i>cк</i>	НБ
Сталь 10	7,830	0,110	1535	0,224	113
Сталь 30	7,817	0,112	1535	0,206	150
Сталь 4	7,820	0,112	1535	0,212	132
Сталь 40Х	7,817	0,114-0,116	1535	0,122	2+3
Сталь ШХ-15	7,811	0,122	1535	0,095	202
Сталь ЗОХГС	7,750	0,122	1535	0,091	198
Сталь 12ХНЗА	7,884	0,126	1535	0,091	178
Сталь ЭЯІТ	7,900	0,120-0,122	1535	0,042	165
Медь	8,930	0,093	1083	1,120	47
Алюминий	2,650	0,214	660	0,6-0,87	28

проводность, тем больше величина A и сила P_z . Следовательно, при расчете по формуле (1) сила при резании стали 10 (a=0,224) получится большей, чем при резании стали ШХ15 (a=0,095), хотя твердость последней почти вдвое превосходит твердость стали 10. Такой результат является безусловно неверным.

В силу постоянства величины k для всех сталей сила P_z при их обработке на скоростях, меньших 2,5 m/muh., оказывается при расчете по формуле (1) практически неизменной, так как величина A при этом изменяется лишь в пределах 1%. Это противоречит опытам, проведенным на микроскоростях, при которых нарост отсутствует и, следовательно, на которые должна распространяться формула (1).

По тем же обстоятельствам сила P_z , рассчитанная по формуле (1), остается постоянной при работе с любыми скоростями в случае, когда диаметр изделия велик и тем более, если обрабатывается плос-

кость $(D = \infty)$, что тоже противоречит опыту.

Сила P_z при резании стали остается неизменной и в случае, когда угол $\varphi=0$. Такой процесс можно осуществить при продольном резании спирального бурта, а также при поперечном точении. В этом случае величина A остается неизменной и равной 2.

Что касается силы F_1 , то формула, предлагаемая авторами, является чисто эмпирической и к тому же может быть использована лишь для металлов с весьма ограниченным диапазоном твердости, так как

сила F_1 получается отрицательной при $H_{\rm B} > 150$.

Для определения расхождений, которые дает формула (1), по сравнению с экспериментом были проведены опыты по некоторым характерным сталям, меди и алюминию [4].

Результаты этих опытов представлены в табл. 3.

Как и следовало ожидать, расхождение расчетных данных с экспериментальными получились весьма существенными: от +65 до -52% при работе на больших скоростях или от +440 до -52%, если учесть еще и опыты с микроскоростями, когда формула (1) оказывается совершенно несостоятельной.

При работе по стали 40, с которой оперировали авторы [1], формула (1) дает действительно удовлетворительные результаты, но толь-

ко на высоких скоростях резания.

Таким образом, формула (1) не может быть использована ни для расчета силы P_z , так как дает очень большие погрешности, ни для анализа процесса резания, поскольку качественное влияние отдельных параметров процесса на силу резания формулой (1) отражено неправильно.

По имеющейся в нашем распоряжении работе [1] нет возможности выявить все ошибки в выводе анализируемого уравнения, сделавшие его непригодным. Укажем лишь на некоторые из них.

Авторы считают, что ... "Эффективная мощность резания состо-

ит из четырех главных составляющих частей:

Таблица 3

Обрабат. материал	s, мм/об	t, MM	v, см/сек		Сила P_z , κr		ΔP_z	
				γ°	по опы-	по формуле (1)	кг	%
Ст. 10	0,291	3,0	308	0	148	224	36	65
,,	"	39	308	10	143	229	86	60
"	"	,,	308	20	120	195	75	62
ШХ 15	"	,,	222	0	204	273	69	34
"	"	"	222	10	188	257	69	37
29	,,	"	222	-10	220	289	69	31
TIRE	,,	2,5	172	0	170	215	45	26
,,	,,	, ,,	172	10	150	202	52	35
79	"	79	172	20	146	187	41	28
Медь	0,4	2,9	0,5	40	29	158	128	442
,	0,38	"	0,5	28	40	180	140	350
29	29	3,5	444	11	113	185	72	64
Алюминий	0,43	4,0	593	20	108	52,5	-56	-52

$$w = w_1 + w_F + w_N + w_{F_1}$$
,

где w_1 -мощность первичной деформации в зоне резания,

 w_F — мощность вторичной деформации, развиваемая силой трения F на передней грани резца,

 w_N —мощность вторичной деформации, развиваемая нормальной силой N на передней грани резца,

 w_{F_s} — мощность трения по задней грани".

С нашей точки зрения, работа нормальной силы, а следовательно, и w_N равны нулю. Сила N является силой взаимодействия стружки с передней гранью резца. Для того, чтобы работа этой силы была отличной от нуля, необходимо иметь скорость перемещения стружки относительно передней грани резца в направлении, нормальном к передней грани. Очевидно, что такая скорость, как и в любом другом процессе трения, в данном случае отсутствует.

 \Im то можно доказать и аналитически. Встав на позиции авторов уравнения, предположим, что скорость v_N отлична от нуля и равна

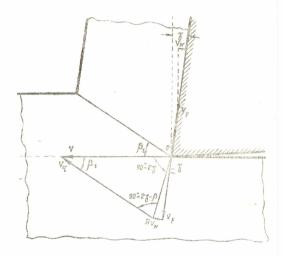
 $v_N = \frac{v}{\xi}$. tg γ . Тогда схема скоростей в процессе резания будет иметь

вид, представленный на фиг. 2. Здесь: v_F — скорость перемещения

рез**ца от**носительно стружки, равная $v_F = \frac{v}{\xi}$, v_{τ} —скорость сдвига,

т. е. скорость перемещения стружки относительно изделия в процессе деформации, v-скорость резца. Из данной схемы можно записать следующее соотношение

$$OA = \frac{v \cdot \sin \beta_1}{\sin[(90^\circ + \gamma) - (\beta_1 - \gamma)]} = \frac{v_F}{\cos \gamma} = \frac{v}{\xi \cdot \cos \gamma}.$$
 Здесь
$$\xi = \frac{\cos(\beta_1 - \gamma)}{\sin \beta_1}.$$


Перевернув дробь и преобразовав синус разности углов, получим

$$\frac{\cos\gamma \cdot \cos(\beta_1 - \gamma)}{\sin\beta_1} + \frac{\sin\gamma \cdot \sin(\beta_1 - \gamma)}{\sin\beta_1} = \frac{\cos(\beta_1 - \gamma) \cdot \cos\gamma}{\sin\beta_1}.$$

Отсюда следует, что

$$\sin \gamma \cdot \sin(\beta_1 - \gamma) = 0.$$

Это равенство, а следовательно, и принятая схема скоростей будут справедливы лишь в двух случаях: при $\gamma = 0$ и $\beta_1 = \gamma$. В первом случае $v_N = 0$, так как tg $\gamma = 0$, во втором случае скорость v_N совпада-

Фиг. 2. Схема скоростей в процессе резания.

ет по направлению со скоростью v_{τ} и должна рассматриваться только как часть последней. Иначе говоря, принятая схема скоростей будет справедлива лишь тогда, когда $v_N=0$, что и требовалось до-

Второй существенной ошибкой вывода уравнения является то, что средняя избыточная температура зоны резания, принятая авторами равной:

$$\Theta_1 = 0.215 \Theta_{\text{пл}} + 0.215 \Theta_{\text{пл}} \cdot e^{-a_1 \sqrt{\frac{v}{a.D}}} \cos\left(2\pi \frac{\tau}{\tau_1} - a_1 \sqrt{\frac{v}{a.D}}\right),$$

не зависит от степени деформации металла в процессе резания. Сред-

няя избыточная температура определяет мощность первичной деформации:

$$w_1 = J \cdot a_1 \cdot b_1 \cdot v \cdot \gamma_1 \cdot c \cdot \Theta_1$$

Здесь Ј-механический эквивалент тепла;

 a_1, b_1 -толщина и ширина среза;

¬
удельный вес обрабатываемого металла;

с-теплоемкость.

Таким образом, авторы полагают, что мощность первичной пластичной деформации не зависит от степени пластической деформации.

Это принципиально неверно.

Кроме того, авторы пишут, что им удалось исключить из уравнения силу трения F и усадку стружки на том основании, что "...работа сил трения на передней грани резца составляет гримерно 21.5% всей работы резания..." и "...усадка стружки пропорциональна удельной силе трения по передней грани $\frac{F}{c}$ ".

В табл. 4 приведены значения полной удельной работы резания A_w и удельной работы трения A_{w_F} для опытов по различным металлам, полученные экспериментально [4]. Из таблицы следует, что для этих опытов работа трения составляет от 13 до 41% работы резания,

а не 21,5%, как утверждают авторы.

Что касается пропорциональности между усадкой стружки и удельной силой трения, то она имеет место только в пределах обработки одного и того же материала. В общем же случае, как показали расчеты, выполненные на основании опытов Хворостухина [4] и ряда других авторов, отношение $\frac{F}{s.t}$: ξ изменяется более чем в 6 раз (от 13 до 79).

Таблица 4

Обрабатываемый иеталл	γ° .	s, мм/об	$AW, \kappa \epsilon/c M^2$	Aw_F , $\kappa \imath / c \mathit{m}^2$	$\frac{Aw_F}{Aw}$,	
Ст. 10	0	0,291	325	81	25	
Ст. 10	0	39	167	32	19,2	
30ХГС	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	316	60	19	
"	0	"	216	32	31,4	
"	5	"	226	56	24,4	
TI RE	0	"	256	67	26,2	
57	0	"	273	75	27,5	
, .	0	"	231	62	26,9	
79	20	"	205	79	38,6	
Ст. 10	20	"	99	40,5	41	
Медь	11	, ,,	156	20	12,8	
27	11	, ,,	115,2	19,2	16,5	
"	20	0,43	70	13,1	18,8	
7	4()	0,31	39,5	14,5	36,7	
Ст. 4	10	0.291	307	43	14	
7	27	20	188	39	20,6	

Таковы основные ошибки вывода уравнения (1), лишающие его, по мнению автора, как практического, так и теоретического интереса.

ЛИТЕРАТУРА

1. Кривоухов В. А., Белоусов А. И. Определение силы резания на основе физических характеристик обрабатываемых металлов. "Исследования по физике твердого тела", АН СССР, 1957.

2. Режимы резания черных металлов инструментом, оснащенным твердым сплавом. НИИБТН, Машгиз, 1958.

3. Орлов Б. М. Влияние смазки на процесс резания стали на микроскорости. Исследования по физике твердого тела", АН СССР, 1957.

4. Хворостухин Л. А. Расчет сил при скоростном резании на основе физико-механических характеристик металлов. Диссертация, Томск, 1953.