1960 г.

НЕКОТОРЫЕ СООБРАЖЕНИЯ ПО ВЫБОРУ ТИПА ПРИЕМНО-УСИЛИТЕЛЬНЫХ ЛАМП ДЛЯ МНОГОКАСКАДНОГО РЕЗОНАНСНОГО УСИЛИТЕЛЯ

и. Ш. СОЛОМОНИК

(Представлено научным семинаром радиотехнического факультета)

При выборе приемно - усилительных ламп для широкополосного резонансного усилителя приходится учитывать склонность усилителя к самовозбуждению, нестабильность полосы пропускания усилителя при смене ламп и необходимость усиления сигналов с широким спектром частот. Для того, чтобы проектируемый усилитель удовлетворял всем этим требованиям, обычно приходится путем ряда последовательных приближений находить наиболее приемлемые компромиссные параметры усилителя, а это приводит к неоптимальному использованию выбранных типов ламп.

Очень часто для широкополосных резонансных усилителей стремятся использовать лампы с большой крутизной, что во многих случаях приводит к неоправданному расходу энергии источников питания, так как для заданной частоты усиливаемых сигналов и выбранной совокупности параметров лампы реализовать большую крутизну лампы не удается. Можно показать, что для определенной частоты принимаемых сигналов существует оптимальная совокупность параметров лампы, обеспечивающая соблюдение всех вышеуказанных технических требований на усилитель.

Известно, что коэффициент усиления каскада, усиливающего необходимый спектр частот, определяется из выражения

$$K_{\Delta F} = \frac{S}{2 \pi \Delta F \varphi(n) C},$$

где S — крутизна характеристики лампы;

 ΔF — полоса пропускания n - каскадного резонансного усилителя;

 $\varphi(n)$ — коэффициент, учитывающий расширение полосы пропускания для одного каскада усилителя;

С — суммарная емкость резонансного контура.

Однако в случае работы усилителя в области высоких частот принять этот коэффициент усиления без проверки каскада на склонность к самовозбуждению рискованно. Поэтому производится проверка коэффициента усиления по формуле Сифорова В. И. [1]

$$K_{\Delta F} \leqslant K_{ycm} = 0.42 \, \sqrt{\frac{S}{\omega C_{ga}}}$$
,

где K_{ycm} — максимальный коэффициент устойчивого усиления; $\omega=2\pi f$ —угловая частота усиливаемых сигналов; C_{ga} —проходная емкость лампы.

Оптимальным режимом работы широкополосного резонансного усилителя будем считать такой режим, при котором максимальный коэффициент устойчивого усиления каждого каскада K_{vem} равен коэффициенту усиления каскада, пропускающего весь требуемый спектр частот $K_{\Delta F}$

 $0.42 \sqrt{\frac{S}{\omega C_{\sigma\sigma}}} = \frac{S}{2 \pi \Delta F \varphi(n) C}.$ (1)

Учитывая допустимое относительное изменение емкости резонансного контура одного каскада при смене ламп

$$\frac{\Delta C}{C} = \xi d = \frac{\xi \Delta F \varphi(n)}{f} \tag{2}$$

и заменяя в выражении (1) произведение $\Delta F \varphi(n) C$ величиной $\frac{\Delta C}{\xi} f$ из выражения (2), получим

$$\frac{1,1}{\xi^2} f = \frac{SC_{ga}}{\Delta C^2},\tag{3}$$

где ६—коэффициент, характеризующий устойчивость полосы пропускания при смене ламп.

- Для многокаскадных усилителей обычно $\xi = 0.25 \div 0.33$ [2], при этом изменение полосы пропускания от смены ламп не превышает $10^{\circ}/_{\circ}$.

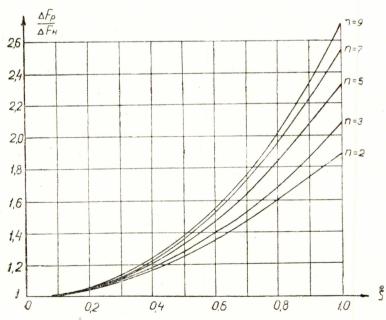


Рис. 1. График выбора величины $\xi = \varphi\left(\frac{\Delta F_p}{\Delta F_H}, n\right)$.

Ниже приводятся справочные данные (см. таблицу) наиболее распространенных типов приемно - усилительных ламп, по которым можно

Таблица

Тип лампы 1	S	$C\partial \kappa$ $n \phi$ 3	Сак пф 4	Сда пф 5	$\frac{SC_{\partial a}}{\Delta C^2}$ $\frac{ce\kappa^{-1}}{6}$	fonm при ξ=0,3 мггц 7
	ма/в					
	2					
1К1П	0,89	$3,5 \pm 0,8$	$7,5 \pm 2,2$	0,01	0,99.106	0,081
2Ж2М	0,95	$5,45\pm1,55$	$8,1 \pm 1,7$	0,02	$1,79.10^{6}$	0,143
2Ж27П	1	$4,5 \pm 0,5$	$2,0 \pm 0,5$	0,015	15.10^{6}	1,23
2K2M	0,95	$5,45\pm 1,55$	$8,1 \pm 1,7$	0,02	$1,79.10^{6}$	0,143
2П1П	2	5.5 ± 1.7	$4,0 \pm 1,6$	0,5	92.10^{6}	7,5
2П29Л	1,9	$4,3 \pm 0,5$	$5,5 \pm 0,6$	0,055	87.106	7,1
2П29П	1,7	$4,85 \pm 0,65$	$2,0 \pm 0,5$	0,015	19,3.106	1,58
4Ж1Л	1,5	$4,0 \pm 0,3$	$4,2 \pm 0,3$	0,007	29,2.106	2,4
4П1Л	6	$8,5 \pm 1$	$9,4 \pm 1,5$	0,1	96.106	7,8
6Б8С	1,35	$4,0 \pm 1$	$9,0 \pm 1,8$	0,008	1,38.106	0,113
6Ж1Б	4,8	4.8 ± 0.85	3.8 ± 0.85	0,003	44,4.106	3,64
6Ж2Б	3,2	$4,9 \pm 0,85$	4,1 ±1	0,03	28.10^{6}	2,3
6Ж1Ж	3,6	$3,5 \pm 1$	3 ±1	0,018	7,2.106	0,59
6Ж1Л	1,5	$4,0 \pm 0,3$	$4,2 \pm 0,3$	0,007	29,2.106	2,4
6Ж1П	5,2	$4,35 \pm 0,45$	$2,45\pm 0,3$	0,025	232.106	19
6Ж2П-В	3,85	$4,5 \pm 0,5$	$2,4 \pm 0,5$	0,018	108.106	8,8
6Ж3	4,9	$8,5 \pm 1,7$	$7,0 \pm 2,1$	0,003	1,0.106	0,82
6ЖЗП	5	$6,5 \pm 1,3$	$1,5 \pm 0,4$	0,025	43,1.106	3,5
6Ж4	9	$9,5 \pm 2$	5 ± 1.5	0,015	11.106	0,89
6Ж7	1,23	$7,0 \pm 1,4$	$12 \pm 3,6$	0,005	0,25.106	0,02
6Ж8	1,65	$6,0 \pm 1,1$	7 ±1,8	0,005	0,98.106	0,08
6К1Ж	1,85	$3,0 \pm 1$	$3,0\pm 1$	0,009	4,1.106	0,335
6K3	2	$6,0 \pm 1,2$	$7,0 \pm 1,8$	0,003	0,67.106	0,055
▶ 6K4	2,7	$8,5 \pm 1,7$	$7,0 \pm 2,1$	0,005	1,6.106	0,13
6K7	1,45	$7,0\pm 1,2$	$1,2 \pm 3$	0,005	0,41.106	0,033
6К1П	1,85	$3,4 \pm 0,7$	$3,0 \pm 0,9$	0,01	7,2.106	0,59
6П1П	4,9	8,0 <u>+</u> 2	$5,0 \pm 1$	0,9	490 106	40
6П3	6	11 ±2	$8,2 \pm 1,5$	1,0	487.106	39,6
6П9	11,7	$13 \pm 1,5$	$7,5 \pm 1$	0,06	112.106	9,2
7Ж12С	1,85	$6,1 \pm 1,2$	15 ± 4	0,04	2,74.106	0,22
10Ж1Л	1,5	$4,0 \pm 0,3$	$4,2 \pm 0,3$	0,007	29,2.106	2,38
12Ж1Л	1,5	$4,0 \pm 0,3$	$4,2 \pm 0,3$	0,007	29,2.106	2,38
12Ж8	1,65	$6,0 \pm 1,1$	$7,0 \pm 1,8$	0,005	1,0.166	0,082
12K3	2	$6,0 \pm 1,2$	$7,0 \pm 1,8$	0,003	0,67.106	0,055
1 2K4	4,7	$8,5 \pm 1,7$	$7,0 \pm 2,1$	0,005	1,63.106	0,132

определить, пользуясь предложенной методикой, оптимальные частоты усиления по заданным требованиям на стабильность полосы пропускания усилителя. В последней колонке таблицы для каждого типа лампы приводятся значения оптимальных частот, рассчитанных для случая ξ =0,3.

Если необходимо произвести выбор типа лампы для многокаскадного резонансного усилителя при менее "жестких" требованиях на устойчивость полосы пропускания, то можно воспользоваться графиком Колосова А. А. (рис. 1), устанавливающего зависимость

$$\xi = \varphi \left(\frac{\Delta F_p}{\Delta F_H}, n \right),$$

где ΔF_p —предполагаемая полоса пропускания расстроенного усилителя (после смены ламп);

 ΔF_H —полоса пропускания настроенного усилителя (до смены ламп); n—число каскадов усилителя.

По выбранной величине ξ , параметрам лампы S, C_{ga} и ΔC определяем оптимальные частоты для различных типов приемно-усилительных ламп. Для проектируемого усилителя выбираем ту лампу, совокупность параметров которой $\frac{SC_{ga}}{\Delta C^2}$ наиболее близко соответствует частоте усиливаемых сигналов. При этом минимальная емкость контура резонансного усилителя выбирается из соотношения

$$C = \frac{\Delta C}{\xi d}$$

Выводы

1. Оптимальный выбор типа усилительной лампы соответствует случаю, когда частота усиливаемых сигналов и требования на стабильность полосы пропускания связаны с параметрами лампы условием (3).

2. При отсутствии ламп, точно отвечающих условию (3), необходимо выбрать лампу, совокупность параметров которой $\frac{SC_{ga}}{\Delta C^2}$ ближе

всего отвечает условию (3), оставаясь при этом меньше 1,1 $\frac{f}{\xi^2}$.

ЛИТЕРАТУРА

1. Сифоров В. И., Радиоприемные устройства, Воениздат, 1954. 2. Колосов А. А., Резонансные системы и резонансные усилители, Связьиздат, 1949.