О ДОБРОТНОСТИ ТРАНЗИСТОРОВ ДЛЯ ВИДЕОУСИЛИТЕЛЕЙ:

И. Н. ПУСТЫНСКИИ

(Представлено научным семинаром радиотехнического факультета)

При проектировании ламповых видеоусилителей [1, 2] лампы выбираются, исходя из их добротности, под которой понимается величина

$$D_{A} = K_{uo} \cdot f_{zp} = \frac{S}{2 \pi \cdot C_{A}} \,. \tag{1}$$

По аналогии, целесообразно ввести понятие о добротности (или площади усиления) транзистора, которую можно считать равной

$$D_{T} = K_{uo} \cdot f_{zp} = \frac{\alpha_{0}}{2 \pi r_{\delta} C_{\kappa} (1+q)}, \qquad (2)$$

где $q = \frac{ au_{\beta}}{R_{\kappa} C_{\kappa} (1 + eta_{0})}$ —коэффициент относительной инерционности

транзистора в усилительном каскаде, τ_{B} —постоянная передачи тока базы.

В отличие от добротности ламп транзисторная добротность зависит от величины нагрузки $R_{\rm H}$ через коэффициент q (см. 2). Привод $q \ll 1$ имеет место максимальная добротность

$$D_{T\,{\rm \tiny MB\,KC}} = \frac{\alpha_0}{2\,\pi\,r_{\rm \tiny G}\,C_{\rm \tiny \it k}} \ .$$

Приняв для простоты q=1 (поскольку обычно $q=0\div 2$), получим усредненную добротность транзистора

$$D_{Tcp} = \frac{\alpha_0}{4 \pi r_6 C_k} \ . \tag{3}$$

Точное же значение добротности может быть получено лишь привопределенной величине $R_{\rm H}$.

В табл. 1. приведены добротности отечественных транзисторов» о формуле 3) и, для сравнения, добротности электронных ламп [3].

Тип транзис- тора	П401	П407	П404	П402	П403		
D_{Tep} , мггц	21,4	36,0	43,5	75,0	150		
Тип лампы	6П9	6Ж5П	6Ж1П	6Ж9П	6Э5П	6СЗП	6С15П
$D_{_{\mathcal{A}}}$, мггц	85	89	122	253	276	390	596

Из таблицы видно, что ряд транзисторов уже почти не уступает лампам, особенно если учесть их максимально возможную добротность.

ЛИТЕРАТУРА

1. Бонч-Бруевич А. М., Применение электронных ламп в экспериментальной физике. Государственное издательство технико-теоретической литературы, М. 1954.
2. Мамонкин И. Г., Импульсные усилители. Госэнергоиздат, 1958.
3. Черепнин Н. В., Электронные лампы для широкополосных усилителей Госэнергоиздат, 1958.