УДК 68-83-52

ОПТИМИЗАЦИЯ КОНТУРОВ РЕГУЛИРОВАНИЯ СИСТЕМ ЭЛЕКТРОПРИВОДА ПО ТИПОВЫМ МЕТОДИКАМ

Н.В. Кояин, О.П. Мальцева, Л.С. Удут

Томский политехнический университет E-mail: epatpu@mail2000.ru

Проведено обобщение типовых методик оптимизации контуров регулирования систем электропривода, систематизированы и дополнены показатели качества при отработке управляющих и возмущающих воздействий. Рассмотрены модульный и линейный оптимумы настройки контуров.

Многоконтурные системы подчиненного регулирования с последовательной коррекцией находят широкое практическое применение в электроприводах как постоянного, так и переменного тока. В соответствии с принципом последовательной коррекции каждому звену объекта управления с большой постоянной времени должно соответствовать звено с обратной передаточной функцией в составе регулятора. Поскольку в составе объекта управления имеются инерционные звенья, то регулятор должен содержать соответствующее число форсирующих звеньев. Сложность объекта управления в контуре регулирования однозначно определяет сложность его регулятора. Если ограничиться пропорционально-интегрально-дифференциальным (ПИД)-регулятором как наиболее сложным, то речь может идти об оптимизации двух типов контуров с объектами управления, содержащими инерционное звено с малой постоянной времени Т_и и последовательно включенные с ним:

- инерционные звенья первого порядка (не более двух) с большими постоянными времени *T*₁>*T*₂>*T*₄ (рис. 1, *a*);
- интегрирующее звено и не более одного инерционного звена с большими постоянными времени T₀>T₂>T_µ (рис. 1, б).

При настройке контура тип и параметры регулятора выбираются таким образом, что регулятор компенсирует большие инерционности объекта и приводит передаточную функцию контура к нормированному виду с учетом значения эквивалентной малой постоянной времени и выбранного критерия оптимизации. В практике наладки систем электропривода основное применение находят два критерия оптимальной настройки контуров по управлению: модульный (технический) оптимум (МО) и симметричный оптимум (СО). Впервые предложенные С. Кесслером в 50-е годы прошлого века [1, 2] и получившие широкое распространение в электроприводах постоянного тока, данные критерии и сегодня не утратили своей значимости. Простые и удобные для практического использования, обеспечивающие качественные показатели, удовлетворяющие в большинстве случаев предъявляемым требованиям, эти ставшие классическими методы притягивают к себе пристальное внимание специалистов в области систем управления, занимающихся проектированием и созданием качественных электроприводов, в том числе переменного тока, разработкой новых методов идентификации технологических процессов и настройки промышленных регуляторов [3-6]. Несмотря на многочисленные публикации, посвященные практической оптимизации

Рис. 1. Контур регулирования с объектом управления, содержащим: а) только инерционные звенья; б) интегрирующее звено

систем регулирования, ряд вопросов, касающихся выбора критериев оптимизации, качества отработки возмущающих воздействий, методики настройки систем с последовательно-параллельной коррекцией и т.д., остается по-прежнему нерешенным. Новые области практического применения требуют не только сравнительного анализа существующих методик оптимизации, но и дальнейшего их развития с учетом возрастающих требования к качеству регулирования и возможностей современной элементной базы.

Целью данной статьи является обобщение типовых методик оптимизации систем автоматизированного электропривода, систематизация и дополнение качественных показателей при отработке контуром регулирования управляющих и возмущающих воздействий.

Модульный оптимум настройки контура

Простейший оптимизированный по МО контур характеризуется наличием одного интегрирующего звена в контуре регулирования, представляет собой систему второго порядка и имеет следующие нормированные передаточные функции:

- разомкнутого контура

$$W(p)_{\text{pas}} = \frac{y(t)}{x_{\text{sag}}(t)} = \frac{1}{a T_{\mu} p (T_{\mu} p + 1)};$$
 (1)

замкнутого контура по управлению

$$W(p)_{y,\text{3BM}} = \frac{y(t)}{x_{\text{3BM}}(t)} = \frac{1}{k_{\text{oy}}} \frac{1}{aT_{\mu} p(T_{\mu} p+1)+1} = \frac{1}{k_{\text{oy}}} \frac{1}{aT_{\mu}^2 p^2 + aT_{\mu} p+1},$$
 (2)

где $x_{\text{зад}}(t)$ – задающее воздействие; y(t) – выходная координата; k_{oy} – коэффициент обратной связи; a – коэффициент оптимизации; p – оператор дифференцирования.

Передаточная функция замкнутого контура по возмущению зависит от места приложения возмущающего воздействия *z*.

$$W(p)_{\rm B.3am} = \frac{y(t)}{z_i(t)} = W_{\rm of}(p) \frac{aT_{\mu} p(T_{\mu} p+1)}{aT_{\mu}^2 p^2 + aT_{\mu} p+1},$$
 (3)

где $W'_{\rm ob}(p)$ — передаточная функция части объекта управления, входящей в прямой канал отработки возмущения.

Передаточные функции оптимизированного по МО разомкнутого (1) и замкнутого по управлению (2) контура не зависят от состава объекта управления, а значения коэффициентов полинома знаменателя, как и для передаточной функции по возмущению (3), определяются только величиной малой постоянной времени объекта T_{u} .

Вид и значения коэффициентов полинома числителя передаточной функции по возмущению (3) зависят от типа и параметров звеньев объекта управления, к входу которых приложено возмущающее воздействие. В результате реакция контура на возмущающее воздействие и установившаяся ошибка будут зависеть от места приложения воздействия. В дальнейшем в качестве основного возмущающего воздействия рассматривается приложенное к выходному звену объекта управления возмущение *z*₃, что является наиболее характерным случаем для контуров регулирования систем управления электроприводов. По МО может быть оптимизирован любой из приведенных на рис. 1 контуров.

Оптимизация по МО контура с инерционными звеньями

Для настройки на МО контура с инерционными звеньями (рис. 1, *a*) в общем случае выбирается ПИД-регулятор с передаточной функцией

$$W_{\rm per}(p) = k_{\rm per} \frac{(T_{\rm H3}p+1)(T_{\rm yn}p+1)}{T_{\rm H}p} = k_{\rm per} \frac{(T_{\rm H3}p+1)(T_{\rm yn}p+1)}{T_{\rm H3}p}, \qquad (4)$$

где
$$k'_{\text{per}} = \frac{1}{k_1 k_2 k_3 k_{\text{oy}}}, \qquad k_{\text{per}} = \frac{T_1}{k_1 k_2 k_3 k_{\text{oy}} a T_{\mu}}$$
 (5)

$$T_{_{\rm H3}} = T_{_{\rm per}} = T_{_1}$$
 (6)

постоянная времени изодрома (регулятора), с;

$$T_{\rm yn} = T_2 \tag{7}$$

- постоянная времени упреждения, с;

$$T_{\mu} = a T_{\mu} \tag{8}$$

- постоянная времени интегрирования, с;

 – k₁, k₂ и k₃ – коэффициенты передачи звеньев прямой цепи;

$$-a=2-$$
коэффициент оптимизации контура по МО.

Если *T*₂=0, то применяется пропорциональноинтегральный регулятор

$$W_{\rm per}(p) = k_{\rm per} \frac{T_{{}_{\rm H3}}p + 1}{T_{{}_{\rm H}}p} = k_{\rm per} \frac{T_{{}_{\rm H3}}p + 1}{T_{{}_{\rm H3}}p}.$$
 (9)

При $T_2=0$ и $T_1=0$ применяется интегральный регулятор

$$W_{\rm per}(p) = k'_{\rm per} \frac{1}{T_{\rm M} p} = k_{\rm per} \frac{1}{T_{\rm M3} p}.$$
 (10)

Коэффициенты усиления и постоянные времени передаточных функций регуляторов (9) и (10) определяются соответственно по выражениям (5), (6) и (8).

Оптимизация по МО контура с интегрирующим звеном

Для настройки на МО контура, содержащего интегрирующее звено (рис. 1, *б*), в общем случае выбирается пропорционально-дифференциальный регулятор с передаточной функцией

$$W_{\rm per}(p) = k_{\rm per}(T_{\rm yn} p + 1).$$
 (11)

Постоянная времени упреждения выбирается в соответствии с (7), а коэффициент усиления регулятора определяется по выражению

$$k_{\rm per} = \frac{T_0}{k_1 k_2 k_{\rm oy} \, a \, T_{\mu}}.$$
 (12)

Если $T_2=0$, то применяется пропорциональный регулятор, коэффициент усиления которого определяется по выражению (12).

Частотные характеристики оптимизированных по МО контуров

При условии равенства постоянных времени T_{μ} частотные характеристики оптимизированных в соответствии с МО контуров по управлению одинаковы (рис. 2). Полоса пропускания по модулю и фазе

$$\omega_{\pi}^{(M)} = \omega_{\pi}^{(\Phi)} = \frac{0,71}{T_{\mu}}, \frac{\text{рад}}{\text{c}}$$

Частотные характеристики оптимизированных контуров по возмущению принципиально разные и зависят от параметров объекта управления (рис. 3, где $L(\omega)$ – логарифмические амплитудно-частотные и $\varphi(\omega)$ – фазо-частотные характеристики).

Показатели качества работы оптимизированных по МО контуров при отработке управляющих воздействий

Оптимизированные по МО контуры регулирования имеют в прямом канале интегрирующее звено (в контуре рис. 1, *a*, в составе регулятора, а в контуре рис. 1, *б*, в составе объекта управления). Это обеспечивает замкнутому контуру астатизм первого порядка по управлению. При отработке управляющего воздействия контуры имеют нулевую установившуюся ошибку Δy_{wer} и скоростную ошибку

$$\Delta y_{y,c\kappa} = \frac{2T_{\mu}}{k_{oy}} \left(\frac{dx}{dt}\right)_{3a\pi} = 2T_{\mu} \left(\frac{dy}{dt}\right)_{3a\pi}.$$
 (13)

Рис 2. Логарифмические частотные характеристики оптимизированного контура: а) разомкнутого (асимптотические); б) замкнутого по управлению

Рис. 3. Логарифмические частотные характеристики по возмущению *z*₃ оптимизированного контура: *a*) с инерционными звеньями; б) с интегрирующим звеном

Реакция оптимизированного по МО контура 2-го порядка на управляющее воздействие определяется только величиной малой постоянной времени T_{μ} и не зависит от других параметров контура и соотношения большой и малой постоянных времени объекта управления (рис. 4). Показатели отработки ступенчатых управляющих воздействий:

- перерегулирование $\sigma=4,32\%$;
- время первого и окончательного вхождения в 5 % зону $t_{\text{pvl}}^{(5)} = t_{\text{pv2}}^{(5)} = 4, 1 T_{\mu}$.

Переходные характеристики по управлению оптимизированных по МО контуров будут одинаковыми, если равны их малые постоянные времени T_{μ} (рис. 4). При необходимости полностью исключить перерегулирование контур настраивается на так называемый линейный оптимум (ЛО).

Рис. 4. Переходные характеристики по управлению оптимизированного контура

Показатели качества работы оптимизированного по МО контура с инерционными звеньями при отработке возмущающих воздействий

Реакция оптимизированного по МО контура с инерционными звеньями в зависимости от места приложения возмущающего воздействия приведена на рис. 5, а. В таком контуре при отработке возмущения интегрирующее звено входит в цепь обратной связи, поэтому он является астатической системой по возмущению и обеспечивает нулевую статическую ошибку вне зависимости от места приложения возмущающего воздействия: $\Delta y_{\text{вуст}}=0$. Значение максимальной динамической ошибки $\Delta y_{\text{вмакс}}$ и время отработки ступенчатого возмущающего воздействия (окончательного вхождения в 10 % зону от $\Delta y_{\text{вмакс}}$) неоднозначно зависят от отношения постоянных времени T_1/T_μ и приведены для возмущающего воздействия z_3 в виде графиков на рис. 6 в относительных единицах. В абсолютных единицах максимальная ошибка и время переходного процесса определяются по выражениям:

$$\Delta y_{\rm B.Makc} = \Delta y^*_{\rm B.Makc} \, k_3 \, \Delta z_3; \quad t_{\rm pB} = t^*_{\rm pB} \, T_{\mu}. \tag{14}$$

Приближенно время переходного процесса и максимальное значение динамической ошибки для возмущения *z*₃ могут быть найдены следующим образом:

$$t_{\rm pB} \approx \left(2, 4+2, 3\frac{T_1}{T_{\mu}}\right) T_{\mu};$$
 (15)

$$\Delta y_{\text{B.MARC}} \approx 1.93 \frac{T_{\mu}}{T_1 \left(1 + \frac{2T_{\mu}}{T_1}\right)} k_3 \,\Delta z_3.$$
(16)

Показатели качества работы оптимизированного по МО контура с интегрирующим звеном при отработке возмущающих воздействий

Оптимизированный по МО контур (рис. 1, δ) является статической системой по возмущению и имеет при отработке возмущающего воздействия не равную нулю установившуюся ошибку (рис. 5, δ). Реакция оптимизированного контура на скачок возмущающего воздействия в общем случае определяется не только малой постоянной времени T_{μ} , но также зависит от других параметров контура и от отношения постоянных времени T_0/T_{μ} .

Установившаяся и максимальная динамическая ошибки вне зависимости от места приложения возмущающего воздействия зависят от отношения постоянных времени T_0/T_μ , в частности для возмущения z_3

Рис. 5. Реакция оптимизированного контура на ступенчатое возмущающее воздействие в зависимости от места приложения возмущения: а) контур с инерционными звеньями, МО; б) контур с интегрирующим звеном, МО; в) контур с интегрирующим звеном, СО

$$\Delta y_{\rm B,ycr} = 2k_{\rm of} \frac{T_{\mu}}{T_0} \Delta z; \qquad (17)$$

$$\Delta y_{\text{\tiny B.Make}} = 2,134 \, k_3 \frac{T_{\mu}}{T_0} \Delta z_3, \tag{18}$$

где k'_{∞} — коэффициент усиления части объекта управления, входящей в прямой канал отработки возмущающего воздействия.

Рис. 6. Показатели отработки ступенчатого возмущающего воздействия z₃ оптимизированным контуром с инерционными звеньями

Следует отметить, что отношение
$$\frac{\Delta y_{\text{в.макс}}}{\Delta y_{\text{в.уст}}} = 1,067$$

остается всегда постоянным, а время отработки возмущения z_3 зависит только от значения малой постоянной времени T_{μ} : $t_{ps}=2,45T_{\mu}$. Переходная характеристика по возмущению приведена на рис. 7, где за базовое значение принято установившееся значение ошибки при оптимизации по линейному оптимуму.

Рис. 7. Переходные характеристики по возмущению *z*₃ оптимизированного контура с интегрирующим звеном

Оптимизация по линейному оптимуму

При настройке на ЛО выбирается коэффициент оптимизации a=4. Передаточные функции контура определяются выражениями (1–3). Частотные и переходные характеристики по управлению оптимизированных по ЛО контуров одинаковые, определяются только значением малой постоянной времени T_{μ} и приведены соответственно на рис. 2 и 4. Полоса пропускания замкнутых контуров по модулю и фазе:

$$\omega_{\Pi}^{(M)} = \frac{0.33}{T_{\mu}}, \frac{\text{pag}}{\text{c}}; \quad \omega_{\Pi}^{(\phi)} = \frac{0.51}{T_{\mu}}, \frac{\text{pag}}{\text{c}}.$$

Оптимизированные по ЛО контуры имеют следующие показатели качества отработки управляющих воздействий:

$$\Delta y_{y,c\kappa} = \frac{4T_{\mu}}{k_{oy}} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)_{\mathrm{sag}} = 4T_{\mu} \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)_{\mathrm{sag}}; \tag{19}$$

$$\Delta y_{y,yct} = 0; \quad \sigma = 0 \%; \quad t_{py1}^{(5)} = t_{py2}^{(5)} = 9,5 T_{\mu}.$$

Контур с инерционными звеньями, оптимизированный по ЛО, обеспечивает нулевую установившуюся ошибку по возмущению $\Delta y_{\text{в,уст}}=0$, а значение максимальной ошибки $\Delta y_{\text{в,макс}}$ и время отработки $t_{\text{рв}}$ ступенчатого возмущения z_3 неоднозначно зависят от отношения T_1/T_{μ} и приведены в относительных единицах на рис. 6. В абсолютных единицах показатели качества работы контура определяются по выражениям (14). Время переходного процесса и максимальное значение динамической ошибки могут быть приближенно найдены следующим образом:

$$t_{\rm ps} \approx \left(7,15+2,42\frac{T_1}{T_{\mu}}\right)T_{\mu},$$
 (20)

СПИСОК ЛИТЕРАТУРЫ

- Kessler C. Über die Vorausberechnung optimal abgestimmter Regelkreise. Teil III. Die optimale Einstellung des Reglers nach dem Betragsoptimum // Regelungstechnik. – 1955. – B. 3. – H. 2. – S. 40–49.
- Kessler C. Das symmetrische Optimum. Teil I und III // Regelungstechnik. – 1958. – B. 6. – H. 11. – S. 395–400; H. 12. – S. 432–436.
- Voda A.A., Landau I.D. A method for the auto-calibration of PID controllers // Automatica. – 1995. – V. 31. – № 1. – P. 41–53.

$$\Delta y_{\text{\tiny B.Make}} \approx 3.5 \frac{T_{\mu}}{T_1 \left(1 + \frac{4T_{\mu}}{T_1}\right)} k_3 \Delta z_3.$$
(21)

Логарифмические частотные и переходные характеристики по возмущению контура с инерционными звеньями, оптимизированного по ЛО, приведены соответственно на рис. 3, *a*, и рис. 6.

Контур с интегрирующим звеном при оптимизации по ЛО имеет следующие показатели отработки ступенчатых возмущающих воздействий:

$$\Delta y_{\rm B,ycr} = \Delta y_{\rm B,Makc} = 4 k_{\rm of} \frac{T_{\mu}}{T_0} \Delta z; \qquad (22)$$

$$t_{\rm pB} = 6,53 T_{\mu}.$$
 (23)

Логарифмические частотные и переходные характеристики контура по возмущению приведены соответственно на рис. 3, *б*, и рис. 7.

Заключение

Настройка контура на модульный оптимум не является оптимальной ни по быстродействию, которое можно увеличить, повышая перерегулирование (коэффициент оптимизации контура a < 2), ни по перерегулированию, которое можно уменьшить, снижая быстродействие (a>2). Однако такая оптимизация в большинстве случаев удовлетворяет требованиям к работе замкнутого контура по управлению в отношении и быстродействия, и перерегулирования. Благодаря этому, а также простоте реализации, модульный оптимум является наиболее распространенным способом оптимизации контуров регулирования в системах электропривода. По возмущению настройка контуров на модульный оптимум имеет явные недостатки: малое быстродействие контура с инерционными звеньями и наличие установившейся ошибки в контуре с интегрирующим звеном.

- O'Dwyer A. PI and PID controller tuning rules for time delay processes: a summary // Proc. of the Irish signals and systems conference. – N.U.I., Galway, 1999. – P. 331–346.
- Preitl S. Precup, R.E. An extension of tuning relations after symmetrical optimum method for PI and PID controllers // Automatica. 1999. – V. 35. – № 10. – P. 1731–1736.
- Vrancic D., Strmenic S., Hanus R. Improving disturbance rejection of PI controllers by means of the magnitude optimum method // ISA Transactions. – 2004. – V. 43. – № 1. – P. 73–74.