О СОКРАЩЕНИИ ВРЕМЕНИ УСКОРЕНИЯ ЭЛЕКТРОНОВ В СИНХРОТРОНЕ НА 1500 *Мэв*

В. В. ИВАШИН, Г. П. ФОМЕНКО

В электронных циклических ускорителях при больших энергиях ускоряемых электронов основная часть мощности ускоряющей системы затрачивается на покрытие радиационных потерь. Квантовый характер излучения приводит к раскачке фазовых и бетатронных колебаний и потере части ускоряемых электронов. Для уменьшения потерь электронов и мощности ускоряющей системы можно увеличить скорость роста магнитного поля в конце цикла ускорения. В настоящей работе рассмотрен один из вариантов увеличения скорости нарастания магнитного поля в конце цикла в ускорителе «Сириус» на 1,5 Гэв, и вычисляется потеря электронов из-за возбуждения фазовых колебаний квантовыми флуктуациями излучения.

Схема возбуждения управляющего поля ускорителя с сокращенным временем ускорения

Магнитное поле электромагнита ускорителя «Сириус» на $1,5~\Gamma$ эв создается путем разряда через коммутирующие приборы (тиратроны

ТР1-85/15) мощной конденсаторной батареи C_1 на обмотку возбуждения электромагнита L_1 [1]. При этом магнитное поле имеет во времени форму синусоидальной кривой, а ускорение до 1,5 Гэв должно происходить за время 37.3. \cdot 10⁻³ cek, 4TO COOTBETCTBVет углу 80° кривой полл возбуждения электромагнита. Расчеты показывают. что за последние 0,3 времени ускорения энергия электронов возрастает только на 16%. За эту же часть времени ускорения интен-

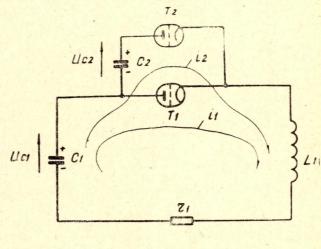


Рис. 1

сивность пучка ускоренных частиц уменьшается на 80% при конечном значении ускоряющего поля 180 кв.

1969

На рис. 1 приведена схема, позголяющая существенно уменьшить

время ускорения при высоких энергиях электронов.

Основная накопительная емкость C_1 разряжается на электромагнит L_1 через тиратроны T_1 . Для тока и напряжения в цепи можно записать:

$$i_1 = -\frac{U_{C1}e^{-bt}}{\omega L_1} \cdot \sin \omega t, \tag{1}$$

$$u_{C1} = \frac{U_{C1} \cdot e^{-bt}}{\omega \sqrt{L_1 C_1}} \sin(\omega t + \psi_0), \qquad (2)$$

где ω — угловая частота контура C_1L_1 с учетом затухания,

$$\psi_0 = \operatorname{arctg} \frac{\omega}{b}, \quad b = \frac{r}{2L_1}.$$

При угле $\approx 60^\circ$ открывается от схемы управления тиратрон T_2 , и ток быстро, под действием напряжения u_{C2} , перехватывается из T_1 в T_2 . Введение в контур L_1C_1 предварительно заряженной емкости C_2 , напряжение которой согласно по направлению с напряжением U_{C1}^* , увеличивает скорость роста тока (и поля) в электромагните L_1 .

Ток в индуктивности L_1 после введения в контур емкости C_2

описывается уравнением

$$i_{1} = I_{\kappa} e^{-bt} \left(\cos \omega_{2} t - \frac{b}{\omega_{2}} \sin \omega_{2} t \right) - \frac{U_{C1} + U_{C2}}{\omega_{2} L_{1}} e^{-bt} \sin \omega_{2} t, \tag{3}$$

где

 $I_{\kappa},\ U_{C1}^*,\ U_{C2}$ — ток в цепи и напряжения на емкостях C_1 и C_2

в конце перевода тока из вентилл T_1 в T_2 .

Учитывая, что затухание мало влияет на ток i_1 , поскольку добротность систем питания ускорителей сравнительно высока, можно положить b=0 и несколько упростить выражение для тока:

$$i_1 = I_{\kappa} \cos \omega_2 t - \frac{U_{C1} + U_{C2}}{\omega_2 L_1} \sin \omega_2 t,$$
 (4)

где

$$\omega_2 pprox \sqrt{rac{C_1 + C_2}{C_1 C_2 L_1}} - ext{угловая}$$
 частота колебаний образовавшегося контура $L_1 C_1 C_2$.

После изменения знака напряжения на емкости C_2 или даже при ее перезаряде до величины напряжения — U_{C2} тиратрон T_1 вновь может быть открыт и перехватить ток вентиля T_2 . Таким образом, после ускорения частиц контур L_1C_1 вновь восстанавливается, и энергия из электромагнита на спадающей части синусоидальной кривой тока переходит в накопительную емкость C_1 . Следует заметить, что если вентиль T_1 открывается при изменении знака напряжения на емкости C_2 , когда абсолютная величина напряжения невелика, в элек-

тромагнит оказывается дополнительно введенной энергия $\frac{1}{2} C_2 U_{C2}^2$.

Расчеты по формулам (1) и (4) показывают, что при вполне приемлемой величине конденсаторной батареи C_2 , составляющей примерно 0,1 от величины основной батареи C_1 , достигнуть номинальной энергии в 1500 M можно не при угле в 80°, а при угле 70° частоты ω . Время ускорения сокращается при этом на $5 \cdot 10^{-3}$ сек, а введение в контур емкости C_2 необходимо делать при угле 60°.

Время ускорения, соответствующее углам $60 \div 80^{\circ}$, когда происходят основные потери электронов, таким образом, сокращается примерно в два раза.

На рис. 2 приведены кривые тока возбуждения электромагнита,

которые можно построить по формулам (1) и (4).



Рис. 2.

Кривая 1 соответствует изменению тока возбуждения электромагнита без увеличения скорости роста поля, а кривая 2-c увеличением скорости роста поля в области углов $60-70^\circ$ частоты ω . Расчет доли потерянных частиц производился по формуле Крамерса [2]. При расчете среднеквадратичной амплитуды фазовых колебаний, возбуждаемых квантовыми флуктуациями излучения, предполагалось, что амплитуда ускоряющего напряжения изменяется в течение цикла по закону, изображенному на рис. 3.

Скачок скорости роста амплитуды высокочастотного поля происходит в момент изменения скорости роста магнитного поля. В первой половине цикла ускоряющее напряжение будет изменяться не так, как изображено на рис. 3, но так как в это время квантовые флуктуации излучения не влияют на потери электронов, то действительная доля потерянных электронов незначительно будет отличаться от вычисленной.

На рис. 4 показано изменение количества частиц по циклу ускорения в относительных единицах для конечных значений амплитуды ускоряющего напряжения 220 кв (кривые 1) и 180 кв (кривые 2) при уменьшенном (пунктирные кривые) и полном времени ускорения. Зависимость доли оставшихся в камере частиц к концу ускорения от величины амплитуды высокочастотного поля показана на рис. 5. Кривая 1 показывает зависимость доли оставшихся в камере частиц при полном времени ускорения, а кривая 2 — при уменьшенном времени ускорения.

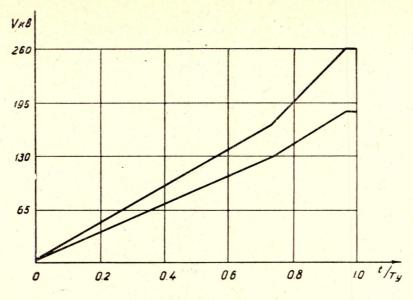
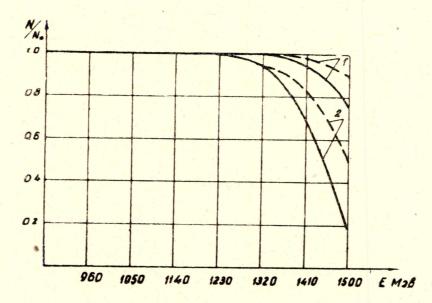



Рис. 3

Nк/ No 10 08 06 04 02 160 180 200 220 240 260 280 300 Vкв

Рис. 5

Из рис. 5 следует, что при конечном ускоряющем напряжении $180~\kappa B$ уменьшение времени ускорения позволит достигнуть конечной энергии 50% частиц от общего числа ускоряемых частиц. Без уменьшения времени ускорения эту возможность имеют только 20% частиц.

При напряжении 220 кв соответственно будет ускоренно 90% частиц

вместо 75%.

Таким образом, уменьшение времени ускорения на $5 \cdot 10^{-3}$ сек за счет конечной части дает возможность или уменьшить ускоряющее напряжение без уменьшения числа ускоренных частиц, или при прежнем напряжении существенно увеличить число ускоренных частиц.

ЛИТЕРАТУРА

1. В. М. Қузнецов. Возбуждение электромагнита синхротрона с энергией ускоренных электронов 1 500 Мэв. Диссертация, г. Томск, НИИ ЯФ, 1963. 2. Н. А. Қгашегs. Physica 7, 285 (1940).