ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 162

1967

ИССЛЕДОВАНИЕ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ЭЛЕКТРИЧЕСКОГО ПРОБОЯ КОРОТКИХ ГАЗОВЫХ ПРОМЕЖУТКОВ В НАНОСЕКУНДНОМ ДИАПАЗОНЕ ВРЕМЕНИ

ю. И. БЫЧКОВ, Г. С. КОРШУНОВ

(Представлена научным семинаром научно-исследовательского института ядерной физики)

Исследованию временных характеристик электрического пробоя коротких газовых промежутков в наносекундном диапазоне времени посвящено мало работ, хотя исследование этих характеристик является важным для выяснения физики процесса и для практического применения в высоковольтной наносекундной импульсной технике. В связи с разработкой в последние годы в Томском политехническом институте большого количества высоковольтных наносекундных импульсных генераторов [1—3], нашедших широкое применение в исследованиях по ядерной физике, квантовой электронике, физике диэлектриков и т. д., и в связи с необходимостью постоянного улучшения параметров генераторов в направлении увеличения крутизны фронта импульса и стабильности срабатывания при запуске появилась необходимость исследования временных характеристик коротких газовых промежутков в наносекундной области времени.

В настоящей работе приведены результаты статистического исследования запаздывания и времени коммутации при статическом и импульсном пробое коротких газовых промежутков в наносекундном диапазоне времени. При этом область исследованных длин промежутков определялась реальными величинами зазоров, используемых в высоковольтных наносекундных импульсных генераторах, и составила 0,05—2,2 мм.

Исследование статистического времени запаздывания разряда

Как известно, время срабатывания искрового промежутка состоит из двух составляющих:

$$t_{\rm s} = \sigma_{\rm cr} + \tau_{\rm \phi}, \tag{1}$$

где σ_{cr} — статистическое время запаздывания, обусловленное появлением эффективного электрона, τ_{ϕ} — время формирования разряда. Так как σ_{cr} связано с ожиданием эффективного электрона, то оно является величиной статистической и имеет разброс в больших пределах. Облучение катода ультрафиолетом (кварцевая лампа, искровой разряд) создает фототок с поверхности катода, за счет чего разброс σ_{cr} может быть уменьшен. В работе [4] показано, что при облучении

180

искрового промежутка искрой рядом расположенного разрядника $\sigma_{cr} = 0,01$ нсек, а τ_{ϕ} — не имеет разбросов и зависит только от приложенного поля *E*. В работе [5] показано, что эффект облучения проявляется в полной мере в том случае, если облучение опережает приход импульса на 70 нсек.

Применение облучения не всегда желательно из конструктивных соображений.

Нами исследовалось статистическое время запаздывания разряда при полях $E = 300 \div 1400 \ \kappa s/cm$, т. е. когда эффективные электроны обеспечиваются за счет автоэмиссии с поверхности катода.

Методика эксперимента изложена в [6]. Полоса пропускания тракта регистрации составляет не менее 3.10⁹ гц. Использовался осциллограф С1-14. Автоматическое устройство для фотографии позволяло осциллографировать большое число пробоев, до 600 на каждый случай. Такое количество осциллограмм дает достоверную статистику распределения времени запаздывания.

На рис. 1, *а* показано распределение $\Delta \frac{n_t}{n_0}$ в функции от времени,

Рис. 1.

a — зависимость $\Delta \frac{n_t}{n_0} (t_3),$ $E = 1400 \frac{\kappa_B}{c_M}, \ \delta = 0,01 \ c_M; \ \delta$ — зависимость $ln \left| \frac{n_\tau}{n_0} (t_3), \right| \qquad E = 1400 \ \frac{\kappa_B}{c_M},$ $\delta = 0,01 \ c_M.$ где n_t —число импульсов с данным временем запаздывания, n_0 —общее число импульсов.

Таким образом, $\Delta \frac{n_t}{n_0}$ — относительное число пробоев, имеющих данное время запаздывания. Например, 0,25 часть пробоев имеет время запаздывания в интервале 1,8—2 нсек.

На рис. 1,б показано то же самое распределение в осях $\left| ln \frac{n_{\tau}}{n_0} \right|$ и t_3 , где n_{τ} — число импульсов, имеющих время запаздывания данное и больше, n_0 — общее число импульсов. Показанное на рис. 1,б t_3 ср. ст. есть среднестатистическое время запаздывания, которое может характеризовать степень разброса времен запаздывания. Чем больший разброс имеется во временах запаздывания, тем положе будет зависимость $\left| ln \frac{n_{\tau}}{n_0} \right|$ от t_3 и тем больше t_3 ср. ст. При уменьшении разброса t_3 ср. ст. уменьшается. На рис. 1, a, b показаны распределения времен запаздывания для промежутка, длиной $\delta = 0,01$ см и $E = 1400 \ \kappa s/cm$, электроды из меди, тщательно полированные.

На рис. 2, a, δ даются зависимости t_a ср. ст. соответственно от давления и длины зазора при постоянной напряженности поля $E=300 \ \kappa \beta/cM_{*}$ Электроды из алюминия тщательно полированные. Из зависимости рис. 2, а видно, что t₃ ср. ст. резко уменьшается с уменьшением давления и при p = 20 мм рт. ст. составляет 0,7 нсек. Согласно (1) σ_{ст} < 0,7 нсек. σ_{ст} в нашем случае определяется током автоэмиссии, который зависит только от напряженности поля Е. С повышением давления при $E = \text{const} \sigma_{cr}$ должно оставаться меньше 0,7 нсек и, следовательно, наблюдаемые нами разбросы времен запаздывания с повышением давления — это разбросы времени τ_{ϕ} . Рис. 2, 6 показывает зависимость t_3 ср. ст от длины разрядного промежутка при $E = 300 \, \kappa B/cM$, давление атмосферное. В этом случае мы имеем уменьшение t_3 ср. ст. от 1400 нсек до 28 нсек при увеличении о от 0,02 см до 0,08 см. В малых промежутках уменьшение разброса времен запаздывания можно достигнуть за счет сверхвысоких перенапряжений. На рис. 1 видно, что только при 14-кратном перенапряжении удалось t₃ ср. ст. снизить до 1 нсек.

Следует отметить, что облучение промежутка от искры рядом расположенного разрядника резко сокращает t_3 ср. ст., так для зазоров $0,01 \div 0,02$ см при облучении t_3 ср. ст. уменьшается более чем в 100 раз. Следовательно, облучение промежутка уменьшает не только составляющую $\sigma_{\rm cr}$, но и τ_{ϕ} .

Исследование времени коммутации

В период коммутации искрового промежутка первоначальное напряжение на электродах U_0 снижается до значения $U \ll U_0$.

Известно [1], что при увеличении напряженности поля E в промежутке, которое может быть достигнуто путем повышения давления P или создания перенапряжения β , время коммутации уменьшается. Экспериментальных же материалов по исследованию коммутации в наносекундной области времен при статическом и перенапряженном пробое коротких промежутков очень мало. В связи с этим нами было проведено исследование времени коммутации при статическом пробое промежутков длиной $\delta = 0,05 \div 2,2$ мм в различных газах при давлениях P = 1 - 7 атм и перенапряженных промежутков длиной 0,1 и 2 мм в воздухе при атмосферном давлении. При этом эксперименты проводились как с подсветкой промежутков лампой ПРК-5, так и без нее.

Методика эксперимента изложена в работе [7]. Диаметры электродов *d* выбирались из условия исключения влияния межэлектродной емкости на время коммутации, описанного в [8], и изготовлялись

182

Рис. 3. a — зависимость $t_{\rm M}(p)$: 1 — $\delta = 2,2$ мм, 2 — $\delta = 0,98$ мм, 3 — $\delta = 0,7$ мм, 4 — $\delta = 0,4$ мм, 5 — $\delta = 0,2$ мм, 6 — $\delta = 0,05$ мм, 7 — $\delta = 0,085$ мм, 8 — $\delta = 0,13$ мм; 6 — зависимость $t_{\rm M}(E)$ для разных газов: для воздуха, N₂, H₂, U₀ = 15 кв; для Аг при $E = 9,3\frac{\kappa_B}{c_M}$, U₀ = 7,2 кв, для остальных точек U₀ = 11,5 кв.

для $\delta = 0.05 \div 0.2$ мм, d = 1.2 мм; для $\delta = 0.4 - 1$ см, d = 6 мм; для $\delta = 2.2$ мм, d = 20 мм.

Характеристикой времени коммутации является время t_м [1]

$$t_{\rm M} = \frac{i_0}{(di/dt)_{\rm M}} = \frac{9.5 \cdot p}{a \cdot E^2}, \qquad (2)$$

где i_0 — амплитуда тока, $(di/dt)_{\rm M}$ — максимальная крутизна нарастания тока во времени, a — константа, зависящая от сорта газа. При измерении величин $t_{\rm M}$ были обнаружены флуктуации. Поэтому каждое значение $t_{\rm M}$ бралось как среднеарифметическое из 20 и более измерений.

Статический пробой промежутков исследовался при разряде линии на линию (волновое сопротивление $z_B = 75$ ом). На рис. 3, а приведены зависимости $t_{\rm M}$ от давления P и длины зазора δ . При уменьшении δ время $t_{\rm M}$ уменьшается, как и при увеличении P, так как напряженность поля в обоих случаях растет. При $E > 150 \ \kappa s/c m$ время $t_{\rm M}$ практически уже не зависит от P и δ . По формуле (2) для данных рис. 3, а была проведена оценка коэффициента а. При этом было получено удовлетворительное согласие с теорией Ромпе—Вайцеля [9]. Максимум на зависимостях для $\delta = 0,05, 0,085, 0,13$ мм также согласуется с этой теорией.

Изложенные выше результаты исследования времени коммутации были получены при отсутствии подсветки промежутков. При подсвечивании промежутков длиной $\delta = 0, 1 - 0, 5$ мм лампой ПРК-5 заметных различий во времени $t_{\rm M}$ не обнаружено.

Необходимо отметить, что при $\delta = 0,05; 0,2; 0,5$ мм материал электродов (Си, Al, W, сталь) и число ударов (~ 1000) не влияли на $t_{\rm M}$ и характер осциллограмм $U_R(t)$. Это говорит о том, что приэлектродные эффекты не имеют существенного влияния на процесс коммутации при статическом пробое коротких промежутков.

На рис. 3, б приведены зависимости $t_{\rm M}$ от E для различных газов при разряде линии. Здесь для воздуха, N₂, H₂ $U_0 = 15 \, \kappa \beta$, для Ar при $E = 9,3 \, \kappa \beta / c M$, $U_0 = 7,2 \, \kappa \beta$, а для остальных точек $U_0 = 11,5 \, \kappa \beta$. Для возлуха, азота, водорода имеется тенденция к сближению времен $t_{\rm M}$ при возрастании E. Интересно отметить, что в Ar при атмосферном давлении (что соответствует для нашего случая $E = 9,3 \, \kappa \beta / c M$, $\delta = 7,8 \, MM$) время $t_{\rm M}$ намного меньше, чем в других газах. Этот факт ранее нигде не отмечался.

Таблица 1

δ=0,1 мм	β	1	2	3	4	5	6	7
Uст=1 кв	t _м нсек	0,85	0,8	0,75	0,7	0,6	0,45	0,3
б=2 мм	β	1,25	1,4	1,7	1,95	2,15	2,4	2,6
<i>U</i> ст = 8,15 <i>кв</i>	t _м нсек	3,2	2,4	• 1,8	1,35	1,1	0,81	0,7

Импульсный пробой промежутков осуществлялся путем подачи на исследуемый зазор импульсов с крутым фронтом различной амплитуды. Время фронта импульса бралось таким, чтобы пробой промежутка происходил на плоской части импульса. Исследовались два зазора. При $\delta = 0,1$ мм промежуток подсвечивался лампой ПРК-5, при $\delta = 2$ мм подсветка отсутствовала. Данные по времени $t_{\rm M}$ и пере-

напряжению $\beta = \frac{U_{np}}{U_{cr}}$, где U_{np} – напряжение, при котором происходит пробой, U_{ст} - статическое пробивное напряжение промежутка, приведены в таблице 1.

Из табл. 1 видно, что одна и та же величина t_м для промежутка δ = 2 мм получается при гораздо меньшем перенапряжении, чем для $\delta = 0,1$ мм. Интересно отметить, что для зазора $\delta = 2$ мм при $\beta = 1,25$ время $t_{\rm M}$ уже в несколько раз меньше времени $t_{\rm M}$, которое получается при статическом пробое промежутка $\delta = 2,0$ мм, p = 1 am.

Авторы благодарят Г. А. Месяца за постановку задачи.

ЛИТЕРАТУРА

1. Г. А. Воробьев, Г. А. Месяц. Техника формирования высоковольтных нано-

2. Г. А. Воробьев, Г. А. Месяц, Г. С. Коршунов. ПТЭ, № 2, 98, 1963. 3. Г. А. Месяц, Г. А. Воробьев, Ю. И. Бычков. Радиотехника и электро-ника, № 4, 10, 1965.

4. R. C. Fletcher. Phys. Rev., 76, 1501, 1949. 5. Г. А. Месяц. Ю. П. Усов, Г. С. Коршунов. Радиотехника и электроника, № 5, 882, 1964.

6. Ю. И. Бычков, Г. А. Месяц. ЖТФ, в печати.
7. Г. А. Месяц, Г. С. Коршунов. ЖТФ, в печати.
8. В. В. Кремнёв, Г. А. Месяц. ПТЭ, № 1, 176, 1966.
9. R. Rompe, W. Weizel. Zeit. Physik, 122, 912, 1944.