Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/132432
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMartyushev, Nikita Vladimirovichen
dc.contributor.authorSpitsin, Vladislav Vladimirovichen
dc.contributor.authorKlyuev, Roman Vladimirovichen
dc.contributor.authorSpitsina (Spitsyna), Lubov Yurievnaen
dc.contributor.authorKonyukhov, Vladimir Yurjevichen
dc.contributor.authorOparina, Tatjyana Anatoljevnaen
dc.contributor.authorBoltrushevich, Aleksandr Evgenjevichen
dc.date.accessioned2025-09-08T08:07:19Z-
dc.date.available2025-09-08T08:07:19Z-
dc.date.issued2025-
dc.identifier.citationPredicting Firm's Performance Based on Panel Data: Using Hybrid Methods to Improve Forecast Accuracy / Nikita V. Martyushev, Vladislav Spitsin, Roman V. Klyuev [et al.] // Mathematics. — 2025. — Vol. 13, iss. 8. — Article number 1247, 33 p..en
dc.identifier.urihttp://earchive.tpu.ru/handle/11683/132432-
dc.description.abstractThe problem of predicting profitability is exceptionally relevant for investors and company owners making decisions about investment and business development. The global literature contains a number of studies where researchers predict the profitability of firms using various methods, including modern machine learning. However, these works hardly take advantage of panel data. This paper takes advantage of additional capabilities offered by panel data and proposes hybrid forecasting methods based on panel data, which allow significantly improving the accuracy of predicting the profitability. Our calculations show that when predicting the profitability, investors and company owners should take into account the profitability of the previous years and the trend in its change. The work shows that this approach can be successfully applied to high-tech companies whose profitability is characterised by increased volatility. Prediction forecasting includes STL-decomposition of time series, regression with random effects and machine learning (LSTM and CatBoost), and clustering. The training sample includes 1811 companies and data for 2013-2018 (panel data, 10,866 observations). The test sample contains data for these companies for 2019. As a result, the authors propose an approach significantly improving the accuracy of predicting ROA and ROE based on the panel nature of the data. The panel data allowed using the profitability of the previous years in forecast models and applying the STL-decomposition of the profitability of the previous years into three variables (Trend, Seasonal, and Residual), considerably improving the quality of the constructed forecast models (STL-CatBoost, STL-LSTM, and STL-RE hybrid models)en
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherMDPI AGen
dc.relation.ispartofMathematics. 2025. Vol. 13, iss. 8en
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.sourceMathematicsen
dc.subjectfirm's performanceen
dc.subjectprofitability predictionen
dc.subjectROAen
dc.subjectROEen
dc.subjectpanel dataen
dc.subjectmachine learningen
dc.subjectCatBoosten
dc.subjectlong short-term memory (LSTM)en
dc.subjectclusteringen
dc.subjectseasonal decomposition of time series by LOESS (STL)en
dc.subjecthybrid methodsen
dc.titlePredicting Firm's Performance Based on Panel Data: Using Hybrid Methods to Improve Forecast Accuracyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dcterms.audienceResearchesen
local.filepathreprint-680061.pdf-
local.filepathhttps://doi.org/10.3390/math13081247-
local.identifier.bibrec(RuTPU)680061-
local.issue8-
local.localtypeСтатьяru
local.volume13-
dc.identifier.doi10.3390/math13081247-
Располагается в коллекциях:Репринты научных публикаций

Файлы этого ресурса:
Файл РазмерФормат 
reprint-680061.pdf3,2 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons