Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/38190
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShcherbakov, M. V.en
dc.contributor.authorBrebels, A.en
dc.contributor.authorShcherbakova, N. L.en
dc.contributor.authorKamaev, V. A.en
dc.contributor.authorGerget, Olga Mikhailovnaen
dc.contributor.authorDevyatykh, Dmitry Vladimirovichen
dc.date.accessioned2017-04-28T07:15:32Z-
dc.date.available2017-04-28T07:15:32Z-
dc.date.issued2017-
dc.identifier.citationOutlier detection and classification in sensor data streams for proactive decision support systems / M. V. Shcherbakov [et al.] // Journal of Physics: Conference Series. — 2017. — Vol. 803 : Information Technologies in Business and Industry (ITBI2016) : International Conference, 21–26 September 2016, Tomsk, Russian Federation : [proceedings]. — [012143, 7 p.].en
dc.identifier.urihttp://earchive.tpu.ru/handle/11683/38190-
dc.description.abstractA paper has a deal with the problem of quality assessment in sensor data streams accumulated by proactive decision support systems. The new problem is stated where outliers need to be detected and to be classified according to their nature of origin. There are two types of outliers defined; the first type is about misoperations of a system and the second type is caused by changes in the observed system behavior due to inner and external influences. The proposed method is based on the data-driven forecast approach to predict the values in the incoming data stream at the expected time. This method includes the forecasting model and the clustering model. The forecasting model predicts a value in the incoming data stream at the expected time to find the deviation between a real observed value and a predicted one. The clustering method is used for taxonomic classification of outliers. Constructive neural networks models (CoNNS) and evolving connectionists systems (ECS) are used for prediction of sensors data. There are two real world tasks are used as case studies. The maximal values of accuracy are 0.992 and 0.974, and F1 scores are 0.967 and 0.938, respectively, for the first and the second tasks. The conclusion contains findings how to apply the proposed method in proactive decision support systems.en
dc.language.isoenen
dc.publisherIOP Publishingen
dc.relation.ispartofJournal of Physics: Conference Series. Vol. 803 : Information Technologies in Business and Industry (ITBI2016). — Bristol, 2017.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectобнаружениеru
dc.subjectпотоки данныхru
dc.subjectклассификацияru
dc.subjectподдержка решенийru
dc.subjectпринятие решенийru
dc.subjectдатчикиru
dc.subjectнейронные сетиru
dc.subjectсистемы связиru
dc.titleOutlier detection and classification in sensor data streams for proactive decision support systemsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.typeinfo:eu-repo/semantics/conferencePaperen
dcterms.audienceResearchesen
local.departmentНациональный исследовательский Томский политехнический университет (ТПУ)::Управление проректора по научной работе и инновациям (НРиИ)::Центр RASA в Томске::Лаборатория дизайна медицинских изделий (Лаб. ДМИ)ru
local.departmentНациональный исследовательский Томский политехнический университет (ТПУ)::Институт кибернетики (ИК)ru
local.description.firstpage12143-
local.filepathhttp://dx.doi.org/10.1088/1742-6596/803/1/012143-
local.identifier.bibrecRU\TPU\network\20028-
local.identifier.colkeyRU\TPU\col\22092-
local.identifier.colkeyRU\TPU\col\18397-
local.identifier.perskeyRU\TPU\pers\31430-
local.identifier.perskeyRU\TPU\pers\37832-
local.localtypeДокладru
local.volume8032016-
local.conference.nameInformation Technologies in Business and Industry (ITBI2016)-
local.conference.date2016-
dc.identifier.doi10.1088/1742-6596/803/1/012143-
Располагается в коллекциях:Материалы конференций

Файлы этого ресурса:
Файл Описание РазмерФормат 
dx.doi.org-10.1088-1742-6596-803-1-012143.pdf627,32 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.