Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/70705
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBaranovskiy, Nikolay Viktorovichen
dc.contributor.authorKirienko, Viktoriya Andreevnaen
dc.date.accessioned2022-05-04T09:28:18Z-
dc.date.available2022-05-04T09:28:18Z-
dc.date.issued2022-
dc.identifier.citationBaranovskiy, N. V. Mathematical Simulation of Forest Fuel Pyrolysis and Crown Forest Fire Impact for Forest Fire Danger and Risk Assessment / N. V. Baranovskiy, V. A. Kirienko // Processes. — 2022. — Vol. 10, iss. 3. — [483, 26 p.].en
dc.identifier.urihttp://earchive.tpu.ru/handle/11683/70705-
dc.description.abstractIn order to predict and assess the danger from crown forest fires, it is necessary to study the thermal degradation of different forest fuels in a high-temperature environment. In this paper, the main characteristics of pyrolysis accompanied by moisture evaporation in a foliage sample of angiosperms (birch) were investigated within conditions typical for a crown forest fire. The heat and mass transfer in the forest fuel element is described by the system of non-stationary non-linear heat conduction equations with corresponding initial and boundary conditions. The considered problem is solved within the framework of the three-dimensional statement by the finite difference method. The locally one-dimensional method was used to solve three-dimensional equations for heat conduction. The simple iteration method was applied to solve nonlinear effects caused by the forest fuel pyrolysis and moisture evaporation. The fourth kind of boundary conditions are applicable at the interface between the sub-areas. Software implementation of the mathematical model is performed in the high-level programming language Delphi in the RAD Studio software. The characteristic changes in the sample temperature field and the phase composition under high-temperature exposure from a forest fire are presented. The induction period of the thermal decomposition of dry organic matter in the sample was determined. Recommendations are made about key features of accounting for the pyrolysis and evaporation processes when predicting forest fire danger. The research results can be used in the development and improvement of systems for predicting forest fire danger and environmental consequences of the forest fires.en
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherMDPI AGen
dc.relationinfo:eu-repo/grantAgreement/RFBR//20-31-51001-
dc.relation.ispartofProcesses. 2022. Vol. 10, iss. 3en
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.sourceProcessesen
dc.subjectлесное топливоru
dc.subjectтеплообменru
dc.subjectмассообменru
dc.subjectпиролизru
dc.subjectматематическое моделированиеru
dc.subjectлесные пожарыru
dc.subjectиндукционный периодru
dc.subjectверховые пожарыru
dc.subjectрискиru
dc.subjectforest fuelen
dc.subjectheat and mass transferen
dc.subjectthree-dimensional statementen
dc.subjectbirch leafen
dc.subjectinduction perioden
dc.subjectforest fire dangeren
dc.subjectpyrolysisen
dc.subjectmathematical modelingen
dc.titleMathematical Simulation of Forest Fuel Pyrolysis and Crown Forest Fire Impact for Forest Fire Danger and Risk Assessmenten
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dcterms.audienceResearchesen
local.description.firstpage483-
local.filepathreprint-nw-38647.pdf-
local.filepathhttps://doi.org/10.3390/pr10030483-
local.identifier.bibrecRU\TPU\network\38647-
local.identifier.perskeyRU\TPU\pers\34172-
local.identifier.perskeyRU\TPU\pers\46765-
local.issue3-
local.localtypeСтатьяru
local.volume10-
dc.identifier.doi10.3390/pr10030483-
Располагается в коллекциях:Репринты научных публикаций

Файлы этого ресурса:
Файл Описание РазмерФормат 
reprint-nw-38647.pdf3,9 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons