Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/133109
Title: Приближенное решения 2D уравнения Навье-Стокса методом Фурье-нейрооператора
Other Titles: Approximate solution of the 2D Navier-Stokes equation using the Fourier Neural Operator method
Authors: Кандыбо, А. С.
metadata.dc.contributor.advisor: Мерзликин, Борис Сергеевич
Keywords: Navier-Stokes equation; FNO; invariance to discretization
Issue Date: 2025
Publisher: Томский политехнический университет
Citation: Кандыбо, А. С. Приближенное решения 2D уравнения Навье-Стокса методом Фурье-нейрооператора / А. С. Кандыбо ; науч. рук. Б. С. Мерзликин // Перспективы развития фундаментальных наук. — Томск : Изд-во ТПУ, 2025. — Т. 3 : Математика. — С. 72-75.
Abstract: The Navier-Stokes equation, along with other equations of hydrogas dynamics, is nontrivial and generally has no analytical solution. Some simplifications make it possible to obtain an analytical solution to this equation, but in practice they often resort to its numerical solution. There are a number of classical methods for this.: finite difference method; finite volume method; finite element method. Classical approaches to solving the Navier-Stokes equation lead to lengthy calculations with the slightest change in equation parameters, initial or boundary conditions. Modern approaches based on neural network models, such as convolutional neural networks, make it possible to optimize the solution of such equations, but they strongly depend on data discretization. The neural Fourier operator avoids this dependence by training the model on data not in the time domain, but in the spectral domain. This approach makes it possible to significantly reduce the time needed to solve the equations of hydrogas dynamics, while maintaining the flexibility of the model
URI: http://earchive.tpu.ru/handle/11683/133109
Appears in Collections:Материалы конференций

Files in This Item:
File SizeFormat 
conference_tpu-2025-C21_V3_p72-75.pdf903,36 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons