Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/32581
Название: Тестирование конструктивного исполнения технических решений по огневой утилизации жидких углеводородных отходов
Авторы: Долгов, Сергей Викторович
Хаустов, Сергей Александрович
Табакаев, Роман Борисович
Ключевые слова: жидкие углеводородные отходы; огневая утилизация; пористые слои; криптол; теплогенерирующие устройства на жидком топливе; liquid hydrocarbon wastes; fire salvaging; porous filler; carbon beads; heat-generating unit using liquid fuel
Дата публикации: 2016
Издатель: Томский политехнический университет
Библиографическое описание: Долгов С. В. Тестирование конструктивного исполнения технических решений по огневой утилизации жидких углеводородных отходов / С. В. Долгов, С. А. Хаустов, Р. Б. Табакаев // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2016. — Т. 327, № 9. — [С. 49-56].
Аннотация: Актуальность исследования обусловлена необходимостью разработки экологически чистых теплогенерирующих устройств для утилизации жидких техногенных отходов. Этот вид отходов содержит большое количество вредных веществ, наносящих вред окружающей среде даже при хранении на специально оборудованных полигонах. Масштабы проблемы очевидны, поскольку в передовых в данном отношении странах доля перерабатываемых отходов составляет не более 60 %, приводя к тому, что отходы скапливаются в огромном количестве. Цель работы: оптимизация конструктивной реализации технических решений для огневой утилизации жидких углеводородных отходов. Методы исследования. С применением программного комплекса «Ansys Multiphysics» произведено математическое моделирование фронта горения при различных условиях истечения, а также подробные измерения профилей давления, скорости реакции, температуры и концентрации компонентов в зоне горения. Результаты математического моделирования показали, что предложенное техническое решение обладает рядом особенностей: высокое аэродинамическое сопротивление пористого слоя обуславливает преобладание диффузионного горения; тепловая инерция при сжигании топлива в активной зоне затрудняет регулирование мощности, а также требует времени для прогрева устройства и перехода в автотермический режим; равномерное тепловыделение в камере сгорания делает возможным организацию полезного теплосъема с использованием тепловоспринимающей поверхности («рубашки охлаждения»); низкие температуры в реакторе являются фактором снижения выбросов оксидов азота и других вредных веществ при огневой утилизации жидких углеводородных отходов. При этом благодаря низкой теплопроводности частиц засыпки, формирующих активную зону с тепловой инерцией, происходит интенсивный теплообмен пористой среды с топливовоздушной смесью. Таким образом, выравнивается объемное распределение температуры, а реакционная зона заполняет большую часть камеры сгорания. Однако преобладание диффузионного горения требует больших избытков воздуха и длинных траекторий спутных течений топлива и окислителя для исключения недожога.
The relevance of the work is caused by the need to develop the environmentally friendly heat-generating devices for salvaging liquid technological wastes. This type of wastes contains large amounts of pollutants, harming to environment even when stored in specially engineered landfills. The magnitude of the problem is obvious, because in the most environmentally-advanced countries the proportion of the recycled wastes does not exceed 60 %, resulting in accumulation of wastes in large amounts. The main aim of the research is to optimize the constructive implementation of technical solutions for salvaging liquid hydrocarbon wastes. The methods used in the research. Using the software package «Ansys Multiphysics» the authors have simulated the combustion front at various flow conditions and measured thoroughly pressure profiles, reaction rate, temperature and components concentrations in the combustion zone. The results of the investigation shown that the proposed technical solution has a number of features. The high aerodynamic resistance of the porous filler causes a prevalence of the diffusion combustion. The thermal inertia of the burning core makes a power control difficult and takes time for warming up the device and entering the autothermal mode. The uniform heat dissipation in the combustion chamber enables a useful heat removal using the heating surface (water jacket). The low temperatures in the reactor are the reduction factor for the emissions of nitrogen oxides and other harmful substances during the utilization of liquid hydrocarbon wastes. A low thermal conductivity of the filler particles forming the thermally inertial core causes an intensive heat exchange of a fuel-air mixture with the porous medium. Thus, the temperature distribution becomes uniform in volume, and the reaction zone fills a large part of the combustion chamber. However, the prevalence of the diffusive combustion requires a large air excess and long cocurrent trajectories of fuel and oxidant flows in order to eliminate the unburned carbon.
URI: http://earchive.tpu.ru/handle/11683/32581
Располагается в коллекциях:Известия ТПУ

Файлы этого ресурса:
Файл РазмерФормат 
bulletin_tpu-2016-v327-i9-05.pdf5,32 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.