Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/36151
Название: Face recognition based on the proximity measure clustering
Авторы: Nemirovskiy, Viktor Borisovich
Stoyanov, Aleksandr Kirillovich
Goremykina, Darjya Sergeevna
Ключевые слова: кластеризация; картография; нейроны; расстояние Кульбака-Лейблера; распознавание лиц
Дата публикации: 2016
Издатель: Томский политехнический университет
Библиографическое описание: Nemirovskiy V. B. Face recognition based on the proximity measure clustering / V. B. Nemirovskiy, A. K. Stoyanov, D. S. Goremykina // Компьютерная оптика. — 2016. — Т. 40, № 5. — [P. 740-745].
Аннотация: In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented.
URI: http://earchive.tpu.ru/handle/11683/36151
Располагается в коллекциях:Препринты научных публикаций

Файлы этого ресурса:
Файл РазмерФормат 
reprint-nw-17764.pdf201,77 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.