Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/43867
Название: Evaluation and prediction of solar radiation for energy management based on neural networks
Авторы: Aldoshina, O. V.
Dinh Van Tai
Ключевые слова: прогнозирование; солнечная радиация; управление; энергия; нейронные сети; возобновляемые источники энергии; интеллектуальные сети; метеорологический мониторинг; энергетические системы; электрические нагрузки
Дата публикации: 2017
Издатель: IOP Publishing
Библиографическое описание: Aldoshina O. V. Evaluation and prediction of solar radiation for energy management based on neural networks / O. V. Aldoshina, Dinh Van Tai // Journal of Physics: Conference Series. — 2017. — Vol. 881 : Innovations in Non-Destructive Testing (SibTest 2017) : International Conference, 27–30 June 2017, Novosibirsk, Russian Federation : [proceedings]. — [012036, 11 p.].
Аннотация: Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
URI: http://earchive.tpu.ru/handle/11683/43867
Располагается в коллекциях:Материалы конференций

Файлы этого ресурса:
Файл РазмерФормат 
dx.doi.org-10.1088-1742-6596-881-1-012036.pdf665,7 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.