Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/5257
Название: Применение многошаговой сегментации для распознавания нечетких дубликатов изображений
Другие названия: Application of multi-step image segmentation for near-duplicate image recognition
Авторы: Немировский, Виктор Борисович
Стоянов, Александр Кириллович
Ключевые слова: изображения; пиксели; точечные изображения; рекуррентные сети; нейтронные сети; кластеризация; сегментация; распознавание; ранговые распределения; image; pixel; point mapping; recurrent neural network; clustering; segmentation; recognition of images; ranking distribution
Дата публикации: 2014
Издатель: Томский политехнический университет
Библиографическое описание: Немировский В. Б. Применение многошаговой сегментации для распознавания нечетких дубликатов изображений / В. Б. Немировский, А. К. Стоянов // Известия Томского политехнического университета [Известия ТПУ]. — 2014. — Т. 324, № 5 : Информационные технологии. — [С. 92-100].
Аннотация: Актуальность работы обусловлена необходимостью распознавания нечётких дубликатов изображений в системах технического зрения, в работе с большими цифровыми архивами, а также при поиске изображений в сети Интернет. Цель работы: исследование возможности применения многошаговой сегментации для распознавания нечётких дубликатов изображений. Методы исследования: в выполненных исследованиях сегментация реализуется за счёт кластеризации яркостей пикселей изображения. Для кластеризации используется рекуррентная нейронная сеть, моделируемая одномерными точечными отображениями. Для оценки близости изображений применено косинусное расстояние между ранговыми распределениями мощностей кластеров яркости. Результаты: Предложен поисковый образ изображения, основанный на ранговом распределении мощностей кластеров яркостей, выделенных на изображении. Приводятся экспериментальные результаты по распознаванию дубликатов изображений, основанному на применении предложенного образа. Показано, что использование многошаговой сегментации и рангового распределения мощности кластеров яркости позволяет надёжно определять нечёткие дубликаты оригинала изображения с большой степенью искажения на них, вплоть до радиуса гауссовых искажений, равного 8 пикселям. Применение такого подхода позволяет надёжно решать и обратную задачу обнаружения оригинала изображения даже по его пятикратно уменьшенной копии с радиусом гауссовых искажений на ней до 8 пикселей.
The urgency of the paper is caused by the need to detect image near-duplicate in computer vision systems, as well as when image searching on Internet or in large digital archives. The main aim of the study: usage of multi-step segmentation for near-duplicate image recognition. The methods used in the study: clustering of image pixels brightness is used for segmentation. The recurrent neural network is used for clustering. To estimate images similarity the authors have applied the cosine distance between rank distributions of clusters cardinality. The results: The authors suggested the search patterns based on the rank distributions of brightness clusters cardinality. The paper introduces the experimental results on the near-duplicate image recognition based on application of the suggested search patterns. It is shown that the use of a multi-step segmentation and rank distribution of the brightness clusters cardinality allows determining reliably the near-duplicate of the original image with a high degree of distortion on them, up to the radius of the Gaussian distortion equal 8 pixels. Such an approach also allows solving reliably the inverse problem of detecting the original image even in its fivefold reduced copy with radius Gaussian distortion on it to 8 pixels.
URI: http://earchive.tpu.ru/handle/11683/5257
ISSN: 1684-8519
Располагается в коллекциях:Известия ТПУ

Файлы этого ресурса:
Файл Описание РазмерФормат 
bulletin_tpu-2014-324-5-11.pdf793,29 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.