Please use this identifier to cite or link to this item:
Title: Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study
Authors: Yankovich, Kseniya Stanislavovna
Yankovich, Elena Petrovna
Baranovskiy, Nikolay Viktorovich
Keywords: растительность; лесные пожары; опасность
Issue Date: 2019
Publisher: Томский политехнический университет
Citation: Yankovich K. S. Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study / K. S. Yankovich, E. P. Yankovich, N. V. Baranovskiy // Mathematical Problems in Engineering. — 2019. — Vol. 2019. — [6296417, 14 p.].
Abstract: The vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area’s forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table.
Appears in Collections:Препринты научных публикаций

Files in This Item:
File SizeFormat 
reprint-nw-28805.pdf8,38 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.