Please use this identifier to cite or link to this item:
Title: Spinning extensions of D(2, 1; α) superconformal mechanics
Authors: Galajinsky, Anton Vladimirovich
Lechtenfeld, Olef
Keywords: extended supersymmetry; integrable field; theories classical theories of gravity; conformal and w symmetry; суперсимметрии; интегрируемые поля; гравитационная теория
Issue Date: 2019
Publisher: Томский политехнический университет
Citation: Galajinsky A. V. Spinning extensions of D(2, 1; α) superconformal mechanics / A. V. Galajinsky, O. Lechtenfeld // Journal of High Energy Physics. — 2019. — Vol. 2019, iss. 3. — [69, 15 p.].
Abstract: As is known, any realization of SU(2) in the phase space of a dynamical system can be generalized to accommodate the exceptional supergroup D(2, 1; α), which is the most general NN = 4 supersymmetric extension of the conformal group in one spatial dimension. We construct novel spinning extensions of D(2, 1; α) superconformal mechanics by adjusting the SU(2) generators associated with the relativistic spinning particle coupled to a spherically symmetric Einstein-Maxwell background. The angular sector of the full superconformal system corresponds to the orbital motion of a particle coupled to a symmetric Euler top, which represents the spin degrees of freedom. This particle moves either on the two-sphere, optionally in the external field of a Dirac monopole, or in the SU(2) group manifold. Each case is proven to be superintegrable, and explicit solutions are given.
Appears in Collections:Препринты научных публикаций

Files in This Item:
File SizeFormat 
reprint-nw-29135.pdf331,05 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.