Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/57713
Title: Nondestructive evaluation of low-velocity impact-induced damage in basalt-carbon hybrid composite laminates using eddy current-pulsed thermography
Authors: Zhang Hai
Sfarra, Stefano
Osman, Ahmad
Sarasini, Fabrizio
Netzelmann, Udo
Valeske, Bernd
Avdelidis, N. P.
Ibarra-Castanedo, Clemente
Maldague, Xavier
Keywords: неразрушающая оценка; повреждения; композиты; вихретоковые измерения
Issue Date: 2019
Publisher: Томский политехнический университет
Citation: Nondestructive evaluation of low-velocity impact-induced damage in basalt-carbon hybrid composite laminates using eddy current-pulsed thermography / Zhang Hai [et al.] // Optical Engineering. — 2019. — Vol. 58, iss. 4. — [041602, 7 p.].
Abstract: Recently, basalt-carbon hybrid composite structures have attracted increasing attention due to their better damage tolerance, if compared with carbon fiber-reinforced polymer composites (CFRP). Low-velocity is considered as one of the most severe threats to composite materials as it is usually invisible and it occurs frequently in service. With this regard, nondestructive testing (NDT) techniques, especially emerging modalities, are expected to be an effective damage detection method. Eddy current-pulsed thermography (ECPT), as an emerging NDT technique, was used to evaluate the damage induced by low-velocity impact loading in a CFRP laminate, as well as in two different-structured basalt-carbon hybrid composite laminates. In addition, ultrasonic C-scan and x-ray computed tomography were performed to validate the thermographic results. Pulsed phase thermography, principal component thermography, and partial least squares thermography were used to process the thermal data and to retrieve the damage imagery. Then, a further analysis was performed on the imagery and temperature profile. As a result, it is concluded that ECPT is an effective technique for hybrid composite evaluation. The impact energy tends to create an interlaminar damage in a sandwich-like structure, while it tends to create an intralaminar damage in an intercalated stacking structure.
URI: http://earchive.tpu.ru/handle/11683/57713
Appears in Collections:Препринты научных публикаций

Files in This Item:
File SizeFormat 
reprint-nw-28417.pdf7,12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.