Please use this identifier to cite or link to this item:
http://earchive.tpu.ru/handle/11683/80585
Title: | Enhancing predictive accuracy in environmental data analysis: a hybrid LASSO-RFR approach for climatic analysis in Siberia |
Authors: | Akpuluma, D. A. Abam, J. I. Williams, C. A. |
Keywords: | climate data analysis; statistical modelling; hybrid model |
Issue Date: | 2024 |
Publisher: | Томский политехнический университет |
Citation: | Akpuluma, D. A. Enhancing predictive accuracy in environmental data analysis: a hybrid LASSO-RFR approach for climatic analysis in Siberia / D. A. Akpuluma, J. I. Abam, C. A. Williams ; Scientific Supervisor A. V. Yurchenko ; Tomsk Polytechnic University // Перспективы развития фундаментальных наук — Томск : Изд-во ТПУ, 2024. — Т. 3 : Математика. — С. 23-25. |
Abstract: | This study introduces a hybrid LASSO-RFR approach for photovoltaic energy forecasting, leveraging LASSO's feature selection with RFR's analytical strength to tackle weather-induced variability. It showcases improved forecast accuracy through simplified datasets and enhanced correlation analysis, resulting in superior model performance. With an MSE of 0.0060 and an R squared of 85.7% for Model 2, the approach outperforms LASSO-only models, marking a significant advancement in renewable energy analytics and offering a potent forecasting tool for areas with extreme weather. |
URI: | http://earchive.tpu.ru/handle/11683/80585 |
Appears in Collections: | Материалы конференций |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
conference_tpu-2024-C21_V3_p23-25.pdf | 733,47 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License