Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/80585
Title: Enhancing predictive accuracy in environmental data analysis: a hybrid LASSO-RFR approach for climatic analysis in Siberia
Authors: Akpuluma, D. A.
Abam, J. I.
Williams, C. A.
Keywords: climate data analysis; statistical modelling; hybrid model
Issue Date: 2024
Publisher: Томский политехнический университет
Citation: Akpuluma, D. A. Enhancing predictive accuracy in environmental data analysis: a hybrid LASSO-RFR approach for climatic analysis in Siberia / D. A. Akpuluma, J. I. Abam, C. A. Williams ; Scientific Supervisor A. V. Yurchenko ; Tomsk Polytechnic University // Перспективы развития фундаментальных наук — Томск : Изд-во ТПУ, 2024. — Т. 3 : Математика. — С. 23-25.
Abstract: This study introduces a hybrid LASSO-RFR approach for photovoltaic energy forecasting, leveraging LASSO's feature selection with RFR's analytical strength to tackle weather-induced variability. It showcases improved forecast accuracy through simplified datasets and enhanced correlation analysis, resulting in superior model performance. With an MSE of 0.0060 and an R squared of 85.7% for Model 2, the approach outperforms LASSO-only models, marking a significant advancement in renewable energy analytics and offering a potent forecasting tool for areas with extreme weather.
URI: http://earchive.tpu.ru/handle/11683/80585
Appears in Collections:Материалы конференций

Files in This Item:
File Description SizeFormat 
conference_tpu-2024-C21_V3_p23-25.pdf733,47 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons