Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/82264
Title: Модели и методы глубокого обучения для решения задач дистанционного мониторинга лесных ресурсов
Other Titles: Deep learning models and methods for solving the problems of remote monitoring of forest resources
Authors: Марков, Николай Григорьевич
Кристиан Родриго Мачука
Keywords: дистанционный мониторинг лесных ресурсов Земли; космические аппараты; беспилотные летательные аппараты; глубокое окисление; модель полносверточной нейронной сети; мультиклассификация снимков хвойных деревьев; remote monitoring of the Earth's forest resources; satellite; unmanned aerial vehicle; deep learning; convolutional neural network model; multiclass classification of coniferous trees
Issue Date: 2024
Publisher: Томский политехнический университет
Citation: Марков, Н. Г. Модели и методы глубокого обучения для решения задач дистанционного мониторинга лесных ресурсов / Н. Г. Марков, Кристиан Родриго Мачука // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2024. — Т. 335, № 6. — С. 55-74.
Abstract: Актуальность. Обусловлена необходимостью высокоточного анализа данных дистанционного мониторинга лесных ресурсов Земли, проводимого с использованием космических аппаратов и (или) беспилотных летательных аппаратов. Цель. Анализ современного состояния исследований в области дистанционного мониторинга лесов с использованием космических аппаратов и беспилотных летательных аппаратов и формулировка направлений перспективного развития этой области; разработка и исследование новых моделей глубокого обучения для анализа снимков высокого и сверхвысокого разрешения хвойных лесов. Объекты. Аппаратные средства, модели, методы и информационные системы и технологии для оперативного анализа данных дистанционного мониторинга лесных ресурсов, полученных в виде снимков высокого и сверхвысокого разрешения. Методы. Модели и методы глубокого обучения для классификации деревьев на снимках; методология проведения оперативного дистанционного мониторинга лесов; методы обучения, валидации и исследования сверточных нейронных сетей. Результаты и выводы. Аналитический обзор моделей, методов и информационных технологий для оперативного анализа данных дистанционного мониторинга лесных ресурсов; перечень сформулированных направлений перспективного развития методологии и инструментария для оперативного проведения дистанционного мониторинга лесов; разработанные на основе классической модели полносверточной сети U-Net две модели Mo-U-Net и Mo-Res-U-Net. Для обучения, валидации и исследования этих моделей созданы два датасета по снимкам с беспилотного летательного аппарата. Получены результаты исследования моделей при решении задач мультиклассификации хвойных деревьев пихты А. sibirica и кедра P. sibirica, пораженных насекомыми- вредителями. Исследования показали, что в отличие от классической модели U-Net, для всех классов деревьев A. sibirica и P. sibirica, включая промежуточные классы, эти модели дают точность классификации по метрикам IoUс и mIoU выше порогового значения 0,5, это указывает на практическое значение таких моделей для лесной отрасли
Relevance. The need for precise data analysis in remote monitoring of Earth's forest resources through satellites and unmanned aerial vehicles. Aim. Analysis of the current research status in forest remote monitoring via satellites and unmanned aerial vehicles, formulation of directions for the prospective development of this area; implementation and investigation of new deep learning models for analyzing high and very high-resolution images of coniferous forests. Objects. Hardware, models, methods, information systems, and technologies for real-time analysis of remote monitoring data of forest resources, obtained in the form of high and very high-resolution images. Methods. Deep learning models and methods for classifying trees in images; methodology for conducting real-time remote forest monitoring; methods for training, validation, and research of convolutional neural networks. Results and conclusions. Analytical review of models, methods, and information technologies for real-time analysis of remote forest monitoring data; list of formulated directions for prospective development of methodology and tools for efficient remote forest monitoring; development of two models, Mo-U-Net and Mo-Res-UNet, based on the classical U-Net model. Two datasets based on imagery from an unmanned aerial vehicle were created for training, validation, and research of these models. The research results were obtained for solving multiclass classification tasks of Siberian fir (A. sibirica) and Siberian pine (P. sibirica) trees infested by insect pests. The studies showed that unlike the classical U-Net model, these models provide a higher classification accuracy for all classes of A. sibirica and P. sibirica trees, including intermediate classes, with IoU and mIoU metrics above the threshold value of 0.5, indicating the practical value of such models for the forestry industry
URI: http://earchive.tpu.ru/handle/11683/82264
ISSN: 2413-1830
Appears in Collections:Известия Томского политехнического университета. Инжиниринг георесурсов

Files in This Item:
File SizeFormat 
bulletin_tpu-2024-v335-i6-06.pdf1,95 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons