Please use this identifier to cite or link to this item:
http://earchive.tpu.ru/handle/11683/84827
Title: | Predictive clarity in energy analytics: xai-enhanced solar forecasting in siberia |
Authors: | Akpuluma, D. A. Yurchenko, Aleksey Vasilievich Abam, J. I. Williams, C. A. |
Keywords: | climate data analysis; hybrid models; XAI implementation |
Issue Date: | 2024 |
Publisher: | Томский политехнический университет |
Citation: | Predictive clarity in energy analytics: xai-enhanced solar forecasting in siberia / Akpuluma D. A., Yurchenko A. V., Abam J. I., Williams C. A. // Молодежь и современные информационные технологии : сборник трудов XXI Международной научно-практической конференции студентов, аспирантов и молодых ученых, 15-18 апреля 2024 г., Томск. — Томск : Изд-во ТПУ, 2024. — С. 230-234. |
Abstract: | This study unveils a robust LASSO-RFR hybrid model for solar power prediction in Siberia, significantly enhancing predictive accuracy and reducing MSE, with an R-squared of 85.9 %. Employing LIME and SHAP for XAI, it foregrounds feature contributions, fostering transparent, reliable forecasting in extreme climates |
URI: | http://earchive.tpu.ru/handle/11683/84827 |
Appears in Collections: | Материалы конференций |
Files in This Item:
File | Size | Format | |
---|---|---|---|
conference_tpu-2024-C04_p230-234.pdf | 646,91 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License