Please use this identifier to cite or link to this item:
http://earchive.tpu.ru/handle/11683/133119| Title: | Разработка торговой стратегии на основе прогнозирования ценового движения с использованием GARCH-модели и оптимизации через LSTM |
| Other Titles: | Development of a trading strategy based on price movement forecasting using the GARCH model and optimization through LSTM |
| Authors: | Шарков, П. В. |
| metadata.dc.contributor.advisor: | Семенов, Михаил Евгеньевич |
| Keywords: | garch-model; time series; LSTM; financial assets |
| Issue Date: | 2025 |
| Publisher: | Томский политехнический университет |
| Citation: | Шарков, П. В. Разработка торговой стратегии на основе прогнозирования ценового движения с использованием GARCH-модели и оптимизации через LSTM / П. В. Шарков ; науч. рук. М. Е. Семенов // Перспективы развития фундаментальных наук. — Томск : Изд-во ТПУ, 2025. — Т. 3 : Математика. — С. 100-102. |
| Abstract: | Predicting the dynamics of financial assets is a crucial task in developing effective trading strategies. In this paper, we apply the GARCH model to estimate market volatility and employ an LSTM neural network to optimize trade execution. The effectiveness of the strategy is evaluated using historical data, with a focus on risk-adjusted returns. The results are assessed through key financial metrics, including the Sharpe ratio. The implementation is performed in Python (arch library), leveraging modern machine learning and statistical modeling libraries |
| URI: | http://earchive.tpu.ru/handle/11683/133119 |
| Appears in Collections: | Материалы конференций |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| conference_tpu-2025-C21_V3_p100-102.pdf | 817,42 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License