Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/133121
Title: Вычисление статистического спрэда методом Ньютона-Рафсона
Other Titles: Calculation of Statistical Spread Using Newton-Raphson Method
Authors: Андриив, Р. И.
metadata.dc.contributor.advisor: Мерзликин, Борис Сергеевич
Keywords: statistical spread; Newton-Raphson method; autoregressive models
Issue Date: 2025
Publisher: Томский политехнический университет
Citation: Андриив, Р. И. Вычисление статистического спрэда методом Ньютона-Рафсона / Р. И. Андриив ; науч. рук. Б. С. Мерзликин // Перспективы развития фундаментальных наук. — Томск : Изд-во ТПУ, 2025. — Т. 3 : Математика. — С. 46-48.
Abstract: The statistical spread, defined as the difference between asset returns or prices, is a vital metric in financial analysis, particularly for pair trading and risk assessment. Traditional autoregressive models, such as AR(1) defined by 𝑆𝑡 = 𝑐 + 𝜙𝑆𝑡−1 + 𝜖𝑡, model spread dynamics using past values, with parameters estimated via the Newton-Raphson method for rapid convergence. However, these models often falter with nonlinear financial time series like Forex data. This study develops a program integrating AR models (AR(1), AR(2), ARX) with neural networks to enhance forecasting accuracy. Using Forex data accessed via APIs, the program collects and processes data, implements autoregressive models, applies the Newton-Raphson method for parameter estimation, and employs neural networks for predictions. The approach evaluates exogenous factors' impact, aiming for a hybrid model that outperforms standalone methods. Results suggest improved spread forecasting, valuable for financial analytics
URI: http://earchive.tpu.ru/handle/11683/133121
Appears in Collections:Материалы конференций

Files in This Item:
File SizeFormat 
conference_tpu-2025-C21_V3_p46-48.pdf774,8 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons