Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/133127
Title: Алгоритмы использования нейронных сетей для улучшения системы RSA
Other Titles: Algorithms for using neural networks to enhance the rsa system
Authors: Гулаков, П. Ю.
metadata.dc.contributor.advisor: Богданов, Олег Викторович
Keywords: neural networks; RSA; cryptography; data security; LSTM; GAN; CNN; key generation; attack detection
Issue Date: 2025
Publisher: Томский политехнический университет
Citation: Гулаков, П. Ю. Алгоритмы использования нейронных сетей для улучшения системы RSA / П. Ю. Гулаков ; науч. рук. О. В. Богданов // Перспективы развития фундаментальных наук. — Томск : Изд-во ТПУ, 2025. — Т. 3 : Математика. — С. 64-65.
Abstract: This study explores the application of neural network algorithms to improve the security and efficiency of the RSA cryptosystem. With the advent of quantum computing and advanced cryptanalysis techniques, traditional RSA implementations face increasing vulnerabilities. We investigate the use of Generative Adversarial Networks (GANs) for key generation, Long Short-Term Memory (LSTM) networks for encryption optimization, and Convolutional Neural Networks (CNNs) for attack detection. Experimental results demonstrate that GANs enhance key randomness, LSTMs reduce encryption time by 15 %, and CNNs achieve 98 % accuracy in attack detection. The findings highlight the potential of neural networks to reinforce RSA against modern threats while maintaining computational efficiency
URI: http://earchive.tpu.ru/handle/11683/133127
Appears in Collections:Материалы конференций

Files in This Item:
File SizeFormat 
conference_tpu-2025-C21_V3_p64-65.pdf621,03 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons