Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://earchive.tpu.ru/handle/11683/80732
Название: | Возможность извлечения урана из отработавшего ядерного топлива в расплавленных электролитах, содержащих редкие элементы |
Авторы: | Д. И., Дмитрий Игоревич Половов, Илья Борисович Ребрин, Олег Иринархович |
Ключевые слова: | электролитическое выделение; электрорафинирование; катодная плотность тока; урановые сплавы; переработка отработавшего ядерного топлива; модельное отработавшее ядерное топливо; electrolytic extraction; electrorefining; cathode current density; uranium alloys; spent nuclear fuel processing; model spent nuclear fuel |
Дата публикации: | 2023 |
Издатель: | Томский политехнический университет |
Библиографическое описание: | Д. И., Дмитрий Игоревич. Возможность извлечения урана из отработавшего ядерного топлива в расплавленных электролитах, содержащих редкие элементы / Д. И. Никитин, И. Б. Половов, О. И. Ребрин // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2023. — Т. 334, № 10. — С. 210-218. |
Аннотация: | Актуальность исследования обусловлена планами использования электролитического разделения металлизированного отработавшего ядерного топлива как одного из этапов пирохимической переработки смешанного нитридного уран-плутониевого отработавшего топлива. Цель: определение параметров процесса электролитического выделения урана из сплава с имитаторами продуктов деления (благородных металлов и редкоземельных элементов), моделирующих отработавшее ядерное топливо, в солевых смесях на основе 3LiCl-2KCl с добавками хлоридов редкоземельных элементов. Объекты: образцы модельного отработавшего ядерного топлива - сплава урана с имитаторами продуктов деления (благородных металлов и редкоземельных элементов) при массовом соотношении Pd:Ru:Ag:Rh=25:1:3:3, Nd:Ce:La:Pr:Sm:Y=15:10:5:5:5:1. Методы: гальваностатическое электрорафинирование, рентгенофлуоресцентный и рентгенофазовый методы анализа, масс-спектрометрия с индуктивно-связанной плазмой, оценка распределения компонентов по системе. Результаты. Полученные данные показали, что при температуре 550 °C катодные осадки представляют собой типичные дендритные формы альфа-урана в ромбической сингонии со склонностью к иглообразованию при увеличении катодной плотности тока. Полученные катодные осадки свободны от примесей рутения, родия, молибдена, празеодима и иттрия. Коэффициент очистки по палладию достигает 3000, а по серебру - 1700. Благородные металлы накапливаются в анодном шламе, при этом даже при полной выработке анодного материала концентрация этой группы элементов в катодном осадке не превышает 0,0015 мас. %. Несмотря на высокую концентрацию хлоридов РЗЭ в электролите, имитирующую накопление ионов РЗЭ при многократной переработке отработавшего ядерного топлива, концентрация редкоземельных металлов в катодном продукте не превышала 0,007 мас. %. При электровыделении урана из модельного отработавшего ядерного топлива в электролите 3LiCl-2KCl-UCl3 (10,1 мас. %) с добавкой хлоридов РЗЭ, имитирующей при многократной переработке их накопление в электролите, при 550 °C, а также начальной катодной плотности тока 0,2 А/см2, удельном количестве электричества 1,0 А∙ч/см2, при полной выработке анодной массы, выделяется катодный осадок урана с выходом по току, превышающим 90 %, и с коэффициентами очистки по сумме редкоземельных металлов 76, по сумме благородных металлов 1800 The relevance of the research is caused by the plans of using electrolytic separation of metalized spent nuclear fuel as a stage in pyrochemical reprocessing of mixed nitride uranium-plutonium fuel. The main aim is to determine the parameters of uranium electrolytic separation from an alloy with simulators of fission products (precious metals and rare earth elements) simulating spent nuclear fuel in salt mixtures based on 3LiCl-2KCl with additives of rare earth element chlorides. Objects: model spent nuclear fuel - uranium alloy with simulators of fission product (precious metals and rare earth elements) with a mass compound of Pd:Ru:Ag:Rh=25:1:3:3, Nd:Ce:La:Pr:Sm:Y=15:10:5:5:5:1). Methods: electrorefining, X-ray fluorescence and X-ray diffraction method of analysis, inductively coupled plasma mass spectrometry, assessment of distribution of components in the system. Results. The data obtained showed that uranium deposits have dendrite formations of alpha uranium at 550 °C in orthorhombic crystal system toward needle cathode current density. The resulting cathode deposits are free from impurities of ruthenium, rhodium, molybdenum, praseodymium and yttrium. The purification coefficient for palladium reaches 3000, and for silver 1700. Noble metals accumulate in the anode sludge, and even with the complete depletion of the anode material. The concentration of noble metals in the cathode deposit does not exceed 0,0015 wt %. Despite the high concentration of rare-earth chlorides in the electrolyte, which simulates the accumulation of rare-earth ions during repeated reprocessing of spent nuclear fuel, the concentration of rare-earth metals in the cathode product did not exceed 0,007 wt %. During uranium electrowinning from a model spent nuclear fuel in the 3LiCl-2KCl-UCl3 electrolyte (10,1 wt %) with REE chlorides, which imitate their accumulation in the electrolyte during repeated processing, at 550 °C, as well as the initial cathode current density of 0,2 A/cm2, the specific amount of electricity is 1,0 A∙h/cm2. A cathode uranium deposit is released with a current efficiency exceeding 90 % with all anode mass depletion, and purification coefficient 1800 for the sum of precious metals and for the sum of rare earth metals |
URI: | http://earchive.tpu.ru/handle/11683/80732 |
ISSN: | 2413-1830 |
Располагается в коллекциях: | Известия Томского политехнического университета. Инжиниринг георесурсов |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
bulletin_tpu-2023-v334-i10-17.pdf | 901,67 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons