Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/84806
Title: Machine learning approaches for equipment failure prediction and predictive maintenance: a comprehensive review
Authors: Ayitha Krishna Likhit
Keywords: machine learning; predictive maintenance; equipment failure prediction
Issue Date: 2024
Publisher: Томский политехнический университет
Citation: Ayitha Krishna Likhit. Machine learning approaches for equipment failure prediction and predictive maintenance: a comprehensive review / Ayitha Krishna Likhit // Молодежь и современные информационные технологии : сборник трудов XXI Международной научно-практической конференции студентов, аспирантов и молодых ученых, 15-18 апреля 2024 г., Томск. — Томск : Изд-во ТПУ, 2024. — С. 123-125.
Abstract: This comprehensive review explores the application of machine learning techniques in predicting equipment failures and facilitating predictive maintenance strategies. Drawing from recent literature and case studies, the paper examines various machine learning algorithms and methodologies employed in this domain. Key findings highlight the effectiveness of machine learning models in pre emptively identifying potential equipment failures, thereby enhancing maintenance practices and minimizing downtime. Implications for industries reliant on machinery and suggestions for future research directions are discussed
URI: http://earchive.tpu.ru/handle/11683/84806
Appears in Collections:Материалы конференций

Files in This Item:
File SizeFormat 
conference_tpu-2024-C04_p123-125.pdf348,83 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons