Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/84880
Title: Multimodal convolutional transformer (mct-dd): depression diagnosis through joint task analysis
Authors: Firoz, N.
Berestneva, Olga Grigorievna
Aksenov, Sergey Vladimirovich
Keywords: genetics; transformers; EEG; Deep Learning
Issue Date: 2024
Publisher: Томский политехнический университет
Citation: Firoz, N. Multimodal convolutional transformer (mct-dd): depression diagnosis through joint task analysis / Firoz N., Beresteneva O. G., Aksyonov S. V. // Молодежь и современные информационные технологии : сборник трудов XXI Международной научно-практической конференции студентов, аспирантов и молодых ученых, 15-18 апреля 2024 г., Томск. — Томск : Изд-во ТПУ, 2024. — С. 47-51.
Abstract: A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data to diagnose MDD. This approach achieved high accuracy (97.16%) and surpasses other methods for early MDD detection, potentially aiding healthcare professionals
URI: http://earchive.tpu.ru/handle/11683/84880
Appears in Collections:Материалы конференций

Files in This Item:
File SizeFormat 
conference_tpu-2024-C04_p47-51.pdf309,43 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons