Please use this identifier to cite or link to this item:
http://earchive.tpu.ru/handle/11683/84880
Title: | Multimodal convolutional transformer (mct-dd): depression diagnosis through joint task analysis |
Authors: | Firoz, N. Berestneva, Olga Grigorievna Aksenov, Sergey Vladimirovich |
Keywords: | genetics; transformers; EEG; Deep Learning |
Issue Date: | 2024 |
Publisher: | Томский политехнический университет |
Citation: | Firoz, N. Multimodal convolutional transformer (mct-dd): depression diagnosis through joint task analysis / Firoz N., Beresteneva O. G., Aksyonov S. V. // Молодежь и современные информационные технологии : сборник трудов XXI Международной научно-практической конференции студентов, аспирантов и молодых ученых, 15-18 апреля 2024 г., Томск. — Томск : Изд-во ТПУ, 2024. — С. 47-51. |
Abstract: | A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data to diagnose MDD. This approach achieved high accuracy (97.16%) and surpasses other methods for early MDD detection, potentially aiding healthcare professionals |
URI: | http://earchive.tpu.ru/handle/11683/84880 |
Appears in Collections: | Материалы конференций |
Files in This Item:
File | Size | Format | |
---|---|---|---|
conference_tpu-2024-C04_p47-51.pdf | 309,43 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License