Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/132477
Название: A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term
Авторы: Kulagin, Anton Evgenievich
Shapovalov, Aleksandr Vasilyevich
Ключевые слова: semiclassically concentrated solutions; Maslov's complex germ method; open quantum systems; asymptotic solution; dissipation; atom laser
Дата публикации: 2024
Издатель: MDPI AG
Библиографическое описание: Kulagin, A. E. A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term / A. E. Kulagin, A. V. Shapovalov // Mathematics. — 2024. — Vol. 12, iss. 4. — Article number 580, 22 p..
Аннотация: The nonlinear Schrödinger equation (NLSE) with a non-Hermitian term is the model for various phenomena in nonlinear open quantum systems. We deal with the Cauchy problem for the nonlocal generalization of multidimensional NLSE with a non-Hermitian term. Using the ideas of the Maslov method, we propose the method of constructing asymptotic solutions to this equation within the framework of semiclassically concentrated states. The semiclassical nonlinear evolution operator and symmetry operators for the leading term of asymptotics are derived. Our approach is based on the solutions of the auxiliary dynamical system that effectively linearizes the problem under certain algebraic conditions. The formalism proposed is illustrated with the specific example of the NLSE with a non-Hermitian term that is the model of an atom laser. The analytical asymptotic solution to the Cauchy problem is obtained explicitly for this example.
URI: http://earchive.tpu.ru/handle/11683/132477
Располагается в коллекциях:Репринты научных публикаций

Файлы этого ресурса:
Файл РазмерФормат 
reprint-672132.pdf714,37 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons