Please use this identifier to cite or link to this item:
http://earchive.tpu.ru/handle/11683/64810
Title: | The Gross–Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve |
Authors: | Shapovalov, Aleksandr Vasilyevich Kulagin, Anton Evgenievich Trifonov, Andrey Yurievich |
Keywords: | уравнение Гросса-Питаевского; нелокальные взаимодействия; бозе-эйнштейновская конденсация; квазиклассическое приближение; операторы симметрии; Gross–Pitaevskii equation; nonlocal interaction; Bose–Einstein condensate; semiclassical approximation; complex germ; symmetry operators |
Issue Date: | 2020 |
Publisher: | MDPI AG |
Citation: | Shapovalov, Aleksandr Vasilyevich. The Gross–Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve / A. V. Shapovalov, A. E. Kulagin, A. Yu. Trifonov // Symmetry. — 2020. — Vol. 12, iss. 2. — [201, 25 p.]. |
Abstract: | We propose an approach to constructing semiclassical solutions for the generalized multidimensional Gross–Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimensional manifold (curve) that evolves over time. The approach reduces the Cauchy problem for the nonlocal Gross–Pitaevskii equation to a similar problem for the associated linear equation. The geometric properties of the resulting solutions are related to Maslov’s complex germ, and the symmetry operators of the associated linear equation lead to the approximation of the symmetry operators for the nonlocal Gross–Pitaevskii equation. |
URI: | http://earchive.tpu.ru/handle/11683/64810 |
Appears in Collections: | Репринты научных публикаций |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
reprint-nw-33189.pdf | 432,27 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License