Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/35736
Title: Phase composition in NiTi near-surface layers after electron beam treatment and its variation depending on beam energy density
Authors: Ostapenko, Marina Gennadievna
Meisner, Ludmila
Lotkov, Aleksandr
Gudimova, Ekaterina
Keywords: фазовый состав; слои; электронные пучки; энергия; поверхностные слои
Issue Date: 2014
Publisher: AIP Publishing
Citation: Phase composition in NiTi near-surface layers after electron beam treatment and its variation depending on beam energy density / M. G. Ostapenko [et al.] // AIP Conference Proceedings. — 2014. — Vol. 1623 : International Conference on Physical Mesomechanics of Multilevel Systems 2014, Tomsk, Russia, 3–5 September 2014 : [proceedings]. — [P. 451-454].
Abstract: In the work, we study the mechanisms of structural phase state formation in NiTi surface layers after low-energy pulsed electron beam irradiation depending on the electron beam energy density. It is revealed that after electron beam treatment of the NiTi specimens at energy densities E[1]=15 J/cm{2}, E[2]=20 J/cm{2}, and E[3]=30 J/cm{2}, a series of effects is observed: the absence of the Ti[2]Ni phase and the presence of new peaks correspond to the B19 martensite phase with monoclinic structure. Estimation of the relative volume content of the B2 and B19 phases from the total intensity of their peaks shows that the percentage of the martensite phase increases from ~5 vol.% in the NiTi specimen irradiated at E[1]=15 J/cm{2} to ~80 vol.% in the NiTi specimen irradiated at E[3]=30 J/cm{2}. It is found that in the NiTi specimens irradiated at E<=20 J/cm{2}, the layer that contains a martensite phase resides not on the surface but at some depth from it.
URI: http://earchive.tpu.ru/handle/11683/35736
Appears in Collections:Материалы конференций

Files in This Item:
File Description SizeFormat 
dx.doi.org-10.1063-1.4898979.pdf558,95 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.