Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/4292
Название: Vector fields of zero total curvature of the second type in fore-dimension space
Авторы: Onishchyk, N. М.
Narezhneva, D. L.
Ключевые слова: vector fields; zero total curvature; fore-dimension space; geometry; Euclidean space; linear operators; geometrical properties; Pfaffian variety; non-holonomic variety; classes; nonholonomicity; researches; Cartan's method of exterior forms; moving frames
Дата публикации: 2007
Издатель: Томский политехнический университет
Библиографическое описание: Onishchyk N. М. Vector fields of zero total curvature of the second type in fore-dimension space / N. М. Onishchyk, D. L. Narezhneva // Bulletin of the Tomsk Polytechnic University. — 2007. — Vol. 310, № 1. — [P. 37-42].
Аннотация: Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames.
URI: http://earchive.tpu.ru/handle/11683/4292
Располагается в коллекциях:Известия ТПУ

Файлы этого ресурса:
Файл Описание РазмерФормат 
bulletin_tpu-2007-310eng-1-08.pdf365,93 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.